
GCHP
Release 14.2.0

GEOS-Chem Support Team

Oct 05, 2023

GETTING STARTED

1 Quickstart Guide 3

2 System Requirements 7

3 Key References 13

4 Download the model 15

5 Compile 17

6 Create a Run Directory 23

7 Download Input Data 27

8 Run the model 31

9 Configuration files 35

10 Configure a run 49

11 Output Files 57

12 Plot Output Data 61

13 Debugging 65

14 Load software into your environment 67

15 Build required software with Spack 71

16 Set up AWS ParallelCluster 79

17 Cache Input Data on Fast Drives 83

18 Use GCHP Containers 87

19 Stretched-Grid Simulation 91

20 Output Along a Track 97

21 Manage a data archive with bashdatacatalog 101

22 Customize simulations with research options 103

i

23 Understand what error messages mean 111

24 Debug GEOS-Chem and HEMCO errors 125

25 View GEOS-Chem species properties 131

26 Update chemical mechanisms with KPP 145

27 View related documentation 157

28 Support Guidelines 159

29 Contributing Guidelines 161

30 Editing this User Guide 165

31 Git Submodules 167

32 Terminology 169

33 GCHP version history 171

34 Upload to Spack 173

Bibliography 175

Index 177

ii

GCHP, Release 14.2.0

The GEOS–Chem model is a global 3-D model of atmospheric composition driven by assimilated meteorological
observations from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation
Office. It is applied by research groups around the world to a wide range of atmospheric composition problems.

• GEOS-Chem Overview

• Narrative description of GEOS-Chem

This site provides instructions for GEOS-Chem High Performance, GEOS-Chem’s multi-node variant. We provide
two different instruction sets for downloading and compiling GCHP: from a clone of the source code, or using the
Spack package manager.

Cloning and building from source code ensures you will have direct access to the latest available versions of GCHP,
provides additional compile-time options, and allows you to make your own modifications to GCHP’s source code.
Spack automates downloading and additional parts of the compiling process while providing you with some standard
togglable compile-time options.

Our Quick Start Guide and the downloading, compiling, and creating a run directory sections of the User Guide give
instructions specifically for using a clone of the source code. Our dedicated Spack guide describes how to install
GCHP and create a run directory with Spack, as well as how to use Spack to install GCHP’s dependencies if needed.

GETTING STARTED 1

http://geos-chem.org/
http://gmao.gsfc.nasa.gov/
http://gmao.gsfc.nasa.gov/
http://acmg.seas.harvard.edu/geos/geos_people.html
http://geos-chem.org/geos-overview
http://geos-chem.org/geos-chem-narrative
getting-started/quick-start.html
user-guide/downloading.html
user-guide/compiling.html
user-guide/rundir-init.html
supplement/spack.html

GCHP, Release 14.2.0

2 GETTING STARTED

CHAPTER

ONE

QUICKSTART GUIDE

This quickstart guide assumes your environment satisfies the requirements described in System Requirements. This
means you should load a compute environment so that programs like cmake and mpirun are available before con-
tinuing. If you do not have some of GCHP’s software dependencies, you can find instructions for installing GCHP’s
external dependencies in our Spack instructions. More detailed instructions on downloading, compiling, and running
GCHP can be found in the User Guide.

1.1 1. Clone GCHP

Download the source code. The --recurse-submodules option will automatically initialize and update all the
submodules:

gcuser:~$ git clone --recurse-submodules https://github.com/geoschem/GCHP.git ~/GCHP
gcuser:~$ cd ~/GCHP

Upon download you will have the most recently released version. You can check what this is by printing the last
commit in the git log and scanning the output for tag.

gcuser:~/GCHP$ git log -n 1

Tip: To use an older GCHP version (e.g. 14.0.0), follow these additional steps:

gcuser:~/GCHP$ git checkout tags/14.0.0 # Points HEAD to the tag "14.
→˓0.0"
gcuser:~/GCHP$ git branch version_14.0.0 # Creates a new branch at
→˓tag "14.0.0"
gcuser:~/GCHP$ git checkout version_14.0.0 # Checks out the version_14.
→˓0.0 branch
gcuser:~/GCHP$ git submodule update --init --recursive # Reverts submodules to the
→˓"14.0.0" tag

You can do this for any tag in the version history. For a list of all tags, type:

gcuser:~/GCHP$ git tag

If you have any unsaved changes, make sure you commit those to a branch prior to updating versions.

3

../supplement/spack.html

GCHP, Release 14.2.0

1.2 2. Create a run directory

Navigate to the run/ subdirectory. To create a run directory, run ./createRunDir.sh and answer the prompts:

gcuser:~/GCHP$ cd run/
gcuser:~/GCHP$./createRunDir.sh

1.3 3. Configure your build

Building GCHP will require 1.4G of storage space. You may build GCHP from within the run directory or from
anywhere else on your system. Building from within the run directory is convenient because it keeps all build files
in close proximity to where you will run GCHP. For this purpose the GCHP run directory includes a build directory
called build/. However, you can create a build directory elsewhere, such as within the GCHP source code. In this
guide we will do both, starting with building from the source code.

gcuser:~/GCHP$ mkdir ~/GCHP/build
gcuser:~/GCHP$ cd ~/GCHP/build

Initialize your build directory by running cmake, passing it the path to your source code. Make sure you have loaded
all libraries required for GCHP prior to this step.

gcuser:~/GCHP/build$ cmake ~/GCHP

Now you can configure build options. These are persistent settings that are saved to your build directory. A useful
build option is -DRUNDIR. This option lets you specify one or more run directories that GCHP is “installed” to,
meaning where the executable is copied, when you do make install. Configure your build so it installs GCHP to
the run directory you created in Step 2.

gcuser:~/GCHP/build$ cmake . -DRUNDIR="/path/to/your/run/directory"

Note: The . in the cmake command above is important. It tells CMake that your current working directory (i.e., .)
is your build directory.

If you decide instead to build GCHP in your run directory you can do all of the above in one step. This makes use of
the CodeDir symbolic link in the run directory:

gcuser:/path/to/your/run/directory/$ cd build
gcuser:/path/to/your/run/directory/build$ cmake ../CodeDir -DRUNDIR=..

GEOS-Chem has a number of optional compiler flags you can add here. For example, to compile with RRTMG:

gcuser:/path/to/your/run/directory/build$ cmake ../CodeDir -DRUNDIR=.. -DRRTMG=y

A useful compiler option is to build in debug mode. Doing this is a good idea if you encountered a segmentation fault
in a previous run and need more information about where the error happened and why.

gcuser:/path/to/your/run/directory/build$ cmake ../CodeDir -DRUNDIR=.. -DCMAKE_BUILD_
→˓TYPE=Debug

See the GEOS-Chem documentation for more information on compiler flags.

4 Chapter 1. Quickstart Guide

GCHP, Release 14.2.0

1.4 4. Compile and install

Compiling GCHP takes about 20 minutes, but it can vary depending on your system, your compiler, and your compiler
flags. To maximize build speed you should compile GCHP in parallel using as many cores as are available. Do this
with the -j flag:

gcuser:~/GCHP/build$ make -j

Upon successful compilation, install the compiled executable to your run directory (or directories):

gcuser:~/GCHP/build$ make install

This copies bin/gchp and supplemental files to your run directory.

Note: You can update build settings at any time:

1. Navigate to your build directory.

2. Update your build settings with cmake (only if they differ since your last execution of cmake)

3. Recompile with make -j. Note that the build system automatically figures out what (if any) files need to be
recompiled.

4. Install the rebuilt executable with make install.

If you do not install the executable to your run directory you can always get the executable from the directory build/
bin.

1.5 5. Configure your run directory

Now, navigate to your run directory:

$ cd path/to/your/run/directory

Commonly changed simulation settings, such as grid resolution, run duration, and number of cores, are set
in setCommonRunSettings.sh. You should review this file as it explains most settings. Note that
setCommonRunSettings.sh is actually a helper script that updates other configuration files. You therefore need
to run it to actually apply the settings:

$ vim setCommonRunSettings.sh # edit simulation settings here
$./setCommonRunSettings.sh # applies the updated settings

Simulation start date is set in cap_restart. Run directories come with this file filled in based on date of the initial
restart file in subdirectory Restarts. You can change the start date only if you have a restart file for the new date in
Restarts. A symbolic link called gchp_restart.nc4 points to the restart file for the date in cap_restart
and the grid resolution in setCommonRunSettings.sh. You need to set this symbolic link before running:

$./setRestartLink.sh # sets symbolic link to target file in
→˓Restarts

If you used an environment file to load libraries prior to building GCHP then you should load that file prior to running.
A simple way to make sure you always use the correct combination of libraries is to set the GCHP environment
symbolic link gchp.env in the run directory:

1.4. 4. Compile and install 5

GCHP, Release 14.2.0

$./setEnvironment.sh /path/to/env/file # sets symbolic link gchp.env
$ source gchp.env # applies the environment settings

1.6 6. Run GCHP

Running GCHP is slightly different depending on your MPI library (e.g., OpenMPI, Intel MPI, MVAPICH2, etc.) and
scheduler (e.g., SLURM, LSF, etc.). If you aren’t familiar with running MPI programs on your system, see Running
GCHP in the user guide, or ask your system administrator.

Your MPI library and scheduler will have a command for launching MPI programs—it’s usually something like
mpirun, mpiexec, or srun. This is the command that you will use to launch the gchp executable. You’ll have
to refer to your system’s documentation for specific instructions on running MPI programs, but generally it looks
something like this:

$ mpirun -np 6 ./gchp # example of running GCHP with 6 slots with OpenMPI

It’s recommended you run GCHP as a batch job. This means that you write a script (usually bash) that configures and
runs your GCHP simulation, and then you submit that script to your local job scheduler (SLURM, LSF, etc.). Example
job scripts are provided in subdirectory ./runScriptSamples in the run directory. That folder also includes an
example script for running GCHP from the command line.

Several steps beyond running GCHP are included in the example run scripts. These include loading the environment,
updating commonly changed run settings, and setting the restart file based on start time and grid resolution. In addition,
the output restart file is moved to the Restarts subdirectory and renamed to include start date and grid resolution
upon successful completion of the run.

Note: File cap_restart is over-written to contain the run end date upon successful completion of a GCHP
run. This is done within GCHP and not by the run script. You can then easily submit a new GCHP run
starting off where your last run left off. In addition, GCHP outputs a restart file to your run directory called
gcchem_internal_checkpoint. This file is moved to subdirectory Restarts and renamed to include the
date and grid resolution. This is done by the run script and technically is optional. We recommend doing this since it
is is good for archiving (restart files will contain date and grid res) and enables use of the ./setRestartLink.sh
script to set the gchp_restart.nc4 symbolic link.

Those are the basics of using GCHP! See the user guide, step-by-step guides, and reference pages for more detailed
instructions.

6 Chapter 1. Quickstart Guide

CHAPTER

TWO

SYSTEM REQUIREMENTS

2.1 Software Requirements

To build and run GCHP your compute environment needs the following software:

• Git

• Make (or GNUMake)

• CMake version 3.13

• Compilers (C, C++, and Fortran):

– Intel compilers version 19, or

– GNU compilers version 10

• MPI (Message Passing Interface)

– OpenMPI 4.0, or

– IntelMPI, or

– MVAPICH2, or

– MPICH, or

– other MPI libraries might work too

• HDF5

• NetCDF (with C, C++, and Fortran support)

• Earth System Modeling Framework (ESMF) version 8.4.2 recommended. Problems with 8.1 and prior have
been reported.

Your system administrator should be able to tell you if this software is already available on your cluster, and if so,
how to activate it. If it is not already available, they might be able to build it for you. If you need to build GCHP’s
dependencies yourself, see the supplemental guide for building required software with Spack.

7

GCHP, Release 14.2.0

2.1.1 Installing ESMF

If you have all of the needed libraries except ESMF then you can download and build ESMF yourself. The ESMF git
repository is available to clone from github.com/esmf-org/esmf. Use git tag to browse versions available and then
git checkout tags/tag_name to checkout the version.

git clone https://github.com/esmf-org/esmf ESMF
cd ESMF
git tag
git checkout tags/v8.4.1

If you have previously downloaded ESMF you can use your same clone to checkout and build a new ESMF version.
Use the same steps as above minus the first step of cloning.

Once you have downloaded ESMF and checked out the version you would like to build, browse the file ESMF/
README.md to familiarize yourself with ESMF documentation. You do not need to visit the documentation for doing
a basic build of ESMF following this tutorial. However, if you are interested in learning more about ESMF and its
options then you can use this guide.

ESMF requires that you define environment variables ESMF_COMPILER, ESMF_COMM, and ESMF_DIR, and also
export environment variables CC, CXX, FC, and MPI_ROOT. Set up an environment file that loads the needed libraries
and also defines these environment variables. If you already have a GEOS-Chem environment file set up then you
can copy it or repurpose it by including the environment variables needed for ESMF. Here is an example of what the
library load and variable exports might look line in your environment file. This example uses GNU compilers and
OpenMPI, but there are notes in the comments on how to use Intel instead.

module purge
module load gcc/10.2.0-fasrc01 # GNU compiler collection (C, C++, Fortran)
module load openmpi/4.1.0-fasrc01 # MPI
module load netcdf-c/4.8.0-fasrc01 # Netcdf-C
module load netcdf-fortran/4.5.3-fasrc01 # Netcdf-Fortran
module load cmake/3.25.2-fasrc01 # CMake

export CC=gcc # C compiler (use icx for Intel)
export CXX=g++ # C++ compiler (se icx for Intel)
export FC=gfortran # Fortran compiler (use ifort for Intel)
export MPI_ROOT=${MPI_HOME} # Path to MPI library
export ESMF_COMPILER=gfortran # Fortran compiler (use intel for Intel)
export ESMF_COMM=openmpi # MPI (use intelmpi for IntelMPI)
export ESMF_DIR=/home/ESMF/ESMF # Path to ESMF repository within a generic
→˓directory called ESMF

You can create multiple ESMF builds. This is useful if you want to use different libraries for the same version of
ESMF, or if you want to build different ESMF versions. To set yourself up to allow multiple builds you should also
export environment variable ESMF_INSTALL_PREFIX and define it as a subdirectory within ESMF_DIR. Include
details about that particular build to distinguish it from others. For example:

export ESMF_INSTALL_PREFIX=${ESMF_DIR}/INSTALL_ESMF8.4.1_gfortran10.2_openmpi4.1

Using this install in GCHP will require setting ESMF_ROOT to the install directory. Add the following line to your
ESMF environment file if you plan on repurposing it for use with GCHP. Otherwise remember to add it to your GCHP
environment file along with the assignment of ESMF_INSTALL_PREFIX.

export ESMF_ROOT=${ESMF_INSTALL_PREFIX}

Once you are ready to build execute the following commands:

8 Chapter 2. System Requirements

https://github.com/esmf-org/esmf

GCHP, Release 14.2.0

$ source path/to/your/env/file
$ cd $ESMF_DIR
$ make -j &> compile.log

Once compilation completes check the end of compile.log to see if compilation was successful. You may run into
known errors with compiling certain ESMF versions with GNU and Intel compilers. If you run into a problem with
GNU you can try adding this to your environment file, resourcing it, and then rebuilding.

ESMF may not build with GCC without the following work-around
for a type mismatch error (https://trac.macports.org/ticket/60954)
if [["x${ESMF_COMPILER}" == "xgfortran"]]; then

export ESMF_F90COMPILEOPTS="-fallow-argument-mismatch -fallow-invalid-boz"
fi

If you run into a problem with Intel compilers then try the following.

Make sure /usr/bin comes first in the search path, so that the build
will find /usr/bin/gcc compiler, which ESMF uses for preprocessing.
Also unset the ESMF_F90COMPILEOPTS variable, which is only needed for GNU.
if [["x${ESMF_COMPILER}" == "xintel"]]; then

export PATH="/usr/bin:${PATH}"
unset ESMF_F90COMPILEOPTS

fi

Once you have a successful run then install ESMF using this command:

$ make install &> install.log

Check the end of file install.log. A message that installation was complete should be there if ESMF installation
was a success.

If all went well there should now be a folder in the top-level ESMF directory corresponding to what you defined as
environment variable ESMF_INSTALL_PREFIX. Archive your compile and install logs to that directory.

$ mv compile.log $ESMF_INSTALL_PREFIX
$ mv install.log $ESMF_INSTALL_PREFIX

Calling make builds ESMF and calling make install places the build into your install directory. In that folder the build
files are placed within subdirectories such as bin and lib, among others. The install directory is not deleted when
you clean ESMF source code with make distclean in the top-level ESMF directory. Therefore you can clean
and rebuild ESMF with different combinations of libraries and versions in advance of needing them to build and run
GCHP. Just remember to clean the source code and source the environment file you intend to use prior to creating
a new build. Make sure you specify a different ${ESMF_INSTALL_PREFIX} for each unique build so as not to
overwrite others.

Below is a complete summary of build steps, including cleanup at the end and moving logs files and your environment
file to the install directory for archiving. This is a complete list of command line steps assuming you have a functional
environment file with correct install path and have checked out the version of ESMF you wish to build.

$ cd $ESMF_DIR
$ make distclean
$ source path/to/env/file/with/unique/ESMF_INSTALL_PREFIX
$ make &> compile.log
$ install $> install.log
$ mv compile.log $ESMF_INSTALL_PREFIX
$ mv install.log $ESMF_INSTALL_PREFIX
$ cp /path/to/your/env/file $ESMF_INSTALL_PREFIX

2.1. Software Requirements 9

GCHP, Release 14.2.0

2.2 Hardware Requirements

High-end HPC infrastructure is not required to use GCHP effectively. Gigabit Ethernet and two nodes is enough for
returns on performance compared to GEOS-Chem Classic.

2.2.1 Bare Minimum Requirements

• 6 cores

• 32 GB of memory

• 100 GB of storage for input and output data

Running GCHP on one node with as few as six cores is possible but we recommend this only for testing short low
resolution runs such as running GCHP for the first time and for debugging. These bare minimum requirements are
sufficient for running GCHP at C24. Please note that we recommend running at C90 or greater for scientific applica-
tions.

2.2.2 Recommended Minimum Requirements

• 2 nodes, preferably 24 cores per node

• Gigabit Ethernet (GbE) interconnect or better

• 100+ GB memory per node

• 1 TB of storage, depending on your input and output needs

These recommended minimums are adequate to effectively use GCHP in scientific applications. These runs should be
at grid resolutions at or above C90.

2.2.3 Big Compute Recommendations

• 5–50 nodes, or more if running at C720 (12 km grid)

• >24 cores per node (the more the better), preferably Intel Xeon

• High throughput and low-latency interconnect, preferably InfiniBand if using 500 cores

• 1 TB of storage, depending on your input and output needs

These requirements can be met by using a high-performance-computing cluster or a cloud-HPC service like AWS.

2.2.4 General Hardware and Software Recommendations

• Hyper-threading may improve simulation throughput, particularly at low core counts

• MPI processes should be bound sequentially across cores and nodes. For example, a simulation using two nodes
with 24 processes per node should bind ranks 0-23 on the first node and ranks 24-47 on the second node. This
should be the default, but it’s worth checking if your performance is lower than expected. With OpenMPI the
–report-bindings argument will show you how processes are ranked and binded.

• If using IntelMPI include the following your environment setup to avoid a run-time error:

export I_MPI_ADJUST_GATHERV=3
export I_MPI_ADJUST_ALLREDUCE=12

10 Chapter 2. System Requirements

GCHP, Release 14.2.0

• If using OpenMPI and a large number of cores (>1000) we recommend enabling the MAPL o-server func-
tionality for writing restart files, thereby speeding up the model. This is set automatically when executing
setCommonRunSettings.sh if using over 1000 cores. You can also toggle whether to use it manually in
that file.

2.2. Hardware Requirements 11

GCHP, Release 14.2.0

12 Chapter 2. System Requirements

CHAPTER

THREE

KEY REFERENCES

• GEOS-Chem was first described in [[Bey et al., 2001]].

• HEMCO is described in [[Keller et al., 2014]] and [[Lin et al., 2021]].

• Columnar operators are described in [[Long et al., 2015]].

• GEOS-Chem High Performance (GCHP) is described in [[Eastham et al., 2018]].

• GCHP execution on the cloud and MPI considerations are described in [[Zhuang et al., 2020]].

• Grid-stretching is described in [[Bindle et al., 2021]].

• Major GCHP developments in v13 are described in [[Martin et al., 2022]].

References

13

GCHP, Release 14.2.0

14 Chapter 3. Key References

CHAPTER

FOUR

DOWNLOAD THE MODEL

The GCHP source code is hosted at https://github.com/geoschem/GCHP. Clone the repository:

gcuser:~$ git clone --recurse-submodules https://github.com/geoschem/GCHP.git GCHP

The GCHP repository has submodules (other repositories that are nested inside the GCHP repository) that aren’t auto-
matically retrieved when you do git clone. The --recurse-submodules option tells Git to finish retrieving
the source code for each submodule. It will also initialize and update each submodule’s source code to the proper
place in its version history.

By default, the source code will be on the main branch which is always the last official release of GCHP. Checking
out the official release is recommended because it is a scientifically-validated version of the code and is easily citable.
You can find the list of past and present GCHP releases here.

Tip: To use an older GCHP version (e.g. 14.0.0), follow these additional steps:

gcuser:~/GCHP$ git checkout tags/14.0.0 # Points HEAD to the tag "14.
→˓0.0"
gcuser:~/GCHP$ git branch version_14.0.0 # Creates a new branch at
→˓tag "14.0.0"
gcuser:~/GCHP$ git checkout version_14.0.0 # Checks out the version_14.
→˓0.0 branch
gcuser:~/GCHP$ git submodule update --init --recursive # Reverts submodules to the
→˓"14.0.0" tag

You can do this for any tag in the version history. For a list of all tags, type:

gcuser:~/GCHP$ git tag

If you have any unsaved changes, make sure you commit those to a branch prior to updating versions.

Before continuing, it is worth checking that the source code was retrieved correctly. Run git status to check that
there are no differences:

gcuser:~/GCHP$ git status
HEAD detached at 14.0.0
nothing to commit, working tree clean
gcuser:~/GCHP$

The output of git status should confirm your GCHP version and that there are no modifications (nothing to
commit, and a clean working tree). It also says that you are are in detached HEAD state, meaning you are not in a
GCHP git software branch. This is true for all submodules in the model as well. If you wish to use version control to
track your changes you must checkout a new branch to work on in the directory you will be developing.

15

https://github.com/geoschem/GCHP
https://github.com/geoschem/GCHP/releases

GCHP, Release 14.2.0

Note: Compiling GCHP and creating a run directory are independent steps, and their order doesn’t matter. A small
exception is the RUNDIR build option, which controls the behaviour of make install which copies the GCHP
executable to the run directory; however, this setting can be reconfigured at any time (e.g., after compiling and creating
a run directory).

Here in the User Guide we describe compiling GCHP before we describe creating a run directory. This is so that
conceptually the instructions have a linear flow. The Quickstart Guide, on the other hand, shows how to make a run
directory prior to compiling.

Note: Another resource for GCHP build instructions is our YouTube tutorial.

16 Chapter 4. Download the model

https://www.youtube.com/watch?v=G_DMCv-mJ2k

CHAPTER

FIVE

COMPILE

There are three steps to building GCHP. The first is configuring your build, which is done with cmake; the second
step is compiling, which is done with make. The third step is install, which is also done with make.

In the first step (build configuration), cmake finds GCHP’s software dependencies on your system, and you can set
build options like enabling/disabling components (such as RRTMG), setting paths to run directories, picking between
debug or speed-optimizing compiler flags, etc. The second step (running make) compiles GCHP according your build
configuration. The third step copies GCHP executable to an appropriate location, such as one or more run directories
if you specify them.

Important: These instructions assume you have loaded a computing environment that satisfies GCHP’s software
requirements You can find instructions for building GCHP’s dependencies yourself in the Spack instructions.

5.1 Create a build directory

A build directory is the working directory for a “build”. Conceptually, a “build” is a case/instance of you compiling
GCHP. A build directory stores configuration files and intermediate files related to the build. These files and generated
and used by CMake, Make, and compilers. You can think a build directory like the blueprints for a construction
project.

Create a new directory and initialize it as a build directory by running CMake. When you initialize a build directory,
the path to the source code is a required argument:

gcuser:~$ cd ~/Code.GCHP
gcuser:~/Code.GCHP$ mkdir build # create a new directory
gcuser:~/Code.GCHP$ cd build
gcuser:~/Code.GCHP/build$ cmake ~/Code.GCHP # initialize the current dir as a build
→˓dir
-- The Fortran compiler identification is GNU 9.2.1
-- The CXX compiler identification is GNU 9.2.1
-- The C compiler identification is GNU 9.2.1
-- Check for working Fortran compiler: /usr/bin/f95
-- Check for working Fortran compiler: /usr/bin/f95 -- works
...
-- Configuring done
-- Generating done
-- Build files have been written to: /src/build
gcuser:~/Code.GCHP/build$

If your cmake output is similar to the snippet above, and it says configuring & generating done, then your configu-
ration was successful and you can move on to compiling or modifying build settings. If you got an error, don’t worry,

17

../supplement/spack.html

GCHP, Release 14.2.0

that just means the automatic configuration failed. To fix the error you might need to tweak settings with more cmake
commands, or you might need to modify your environment and run cmake again to retry the automatic configuration.

If you want to restart configuring your build from scratch, delete your build directory. Note that the name and location
of your build directory doesn’t matter, but a good name is build/, and a good place for it is the top-level of your
source code.

5.1.1 Resolving initialization errors

If your last step was successful, skip this section.

Even if you got a cmake error, your build directory was initialized. This means from now on, you can check if the
configuration is fixed by running

gcuser:~/Code.GCHP/build$ cmake . # "." because the cwd is the build dir

To resolve your errors, you might need to modify your environment (e.g., load different software modules), or give
CMake a hint about where some software is installed. Once you identify the problem and make the appropriate update,
run cmake . to see if the error is fixed.

To start troubleshooting, read the cmake output in full. It is human-readable, and includes important information
about how the build was set up on your system, and specifically what error is preventing a successful configuration
(e.g., a dependency that wasn’t found, or a compiler that is broken). To begin troubleshooting you should check that:

• check that the compilers are what you expect (e.g., GNU 9.2, Intel 19.1, etc.)

• check that dependencies like MPI, HDF5, NetCDF, and ESMF were found

• check for obvious errors/incompatibilities in the paths to “Found” dependencies

Note: F2PY and ImageMagick are not required. You can safely ignore warnings about them not being found.

Most errors are caused by one or more of the following issues:

• The wrong compilers were chosen. Fix this by explicitly setting the compilers.

• The compiler’s version is too old. Fix this by using newer compilers.

• A software dependency is missing. Fix this by loading the appropriate software. Some hints:

– If HDF5 is missing, does h5cc -show or h5pcc -show work?

– If NetCDF is missing, do nc-config --all and nf-config --all work?

– If MPI is missing, does mpiexec --help work?

• A software dependency is loaded but it wasn’t found automatically. Fix this by pointing CMake to the missing
software/files with cmake . -DCMAKE_PREFIX_PATH=/path/to/missing/files.

– If ESMF is missing, point CMake to your ESMF install with -DCMAKE_PREFIX_PATH

• Software modules that are not compatible. Fix this by loading compatible modules/dependencies/compilers.
Some hints:

– This often shows as an error message saying a compiler is “broken” or “doesn’t work”

– E.g. incompatibility #1: you’re using GNU compilers but HDF5 is built for Intel compilers

– E.g. incompatibility #2: ESMF was compiled for a different compiler, MPI, or HDF5

18 Chapter 5. Compile

GCHP, Release 14.2.0

If you are stumped, don’t hesitate to open an issue on GitHub. Your system administrators might also be able to help.
Be sure to include CMakeCache.txt from your build directory, as it contains useful information for troubleshooting.

Note: If you get a CMake error saying “Could not find XXXX” (where XXXX is a dependency like ESMF, NetCDF,
HDF5, etc.), the problem is that CMake can’t automatically find where that library is installed. You can add custom
paths to CMake’s default search list by setting the CMAKE_PREFIX_PATH variable.

For example, if you got an error saying “Could not find ESMF”, and ESMF is installed to /software/ESMF, you
would do

gcuser:~/Code.GCHP/build$ cmake . -DCMAKE_PREFIX_PATH=/software/ESMF
...
-- Found ESMF: /software/ESMF/include (found version "8.1.0")
...
-- Configuring done
-- Generating done
-- Build files have been written to: /src/build
gcuser:~/Code.GCHP/build$

See the next section for details on setting variables like CMAKE_PREFIX_PATH.

Note: You can explicitly specify compilers by setting the CC, CXX, and FC environment variables. If the auto-selected
compilers are the wrong ones, create a brand new build directory, and set these variables before you initialize it. E.g.:

gcuser:~/Code.GCHP/build$ cd ..
gcuser:~/Code.GCHP$ rm -rf build # build dir initialized with wrong compilers
gcuser:~/Code.GCHP$ mkdir build # make a new build directory
gcuser:~/Code.GCHP$ cd build
gcuser:~/Code.GCHP/build$ export CC=icc # select "icc" as C compiler
gcuser:~/Code.GCHP/build$ export CXX=icpc # select "icpc" as C++ compiler
gcuser:~/Code.GCHP/build$ export FC=icc # select "ifort" as Fortran compiler
gcuser:~/Code.GCHP/build$ cmake ~/Code.GCHP # initialize new build dir
-- The Fortran compiler identification is Intel 19.1.0.20191121
-- The CXX compiler identification is Intel 19.1.0.20191121
-- The C compiler identification is Intel 19.1.0.20191121
...

5.2 Configure your build

Build settings are controlled by cmake commands like:

$ cmake . -D<NAME>="<VALUE>"

where <NAME> is the name of the setting, and <VALUE> is the value you are assigning it. These settings are persistent
and saved in your build directory. You can set multiple variables in the same command, and you can run cmake as
many times as needed to configure your desired settings.

Note: The . argument is important. It is the path to your build directory which is . here.

No build settings are required. You can find the complete list of GCHP’s build settings here. The most common setting
is RUNDIR, which lets you specify one or more run directories to install GCHP to. Here, “install” refers to copying

5.2. Configure your build 19

GCHP, Release 14.2.0

the compiled executable, and some supplemental files with build settings, to your run directory/directories.

Note: You can update build settings after you compile GCHP. Simply rerun make and (optionally) make install,
and the build system will automatically figure out what needs to be recompiled.

Since there are no required build settings, so here, we will stick with the default settings.

You should notice that when you run cmake it ends with:

...
-- Configuring done
-- Generating done
-- Build files have been written to: /src/build

This tells you that the configuration was successful, and that you are ready to compile.

5.3 Compile GCHP

You compile GCHP with:

gcuser:~/Code.GCHP/build$ make -j # -j enables compiling in parallel

Note: You can add VERBOSE=1 to see all the compiler commands.

Note: If you run out of memory while compiling, restrict the number of processes that can run concurrently (e.g., use
-j20 to restrict to 20 processes)

Compiling GCHP creates ./bin/gchp (the GCHP executable). You can copy this executable to your run directory
manually, or if you set the RUNDIR build option, you can do

gcuser:~/Code.GCHP/build$ make install # Requires that RUNDIR build option is set

to copy the executable (and supplemental files) to your run directories.

Now you have compiled GCHP! You can move on to creating a run directory!

5.4 Recompiling

You need to recompile GCHP if you update a build setting or modify the source code. With CMake, you do not need
to clean before recompiling. The build system automatically figures out which files need to be recompiled (it’s usually
a small subset). This is known as incremental compiling.

To recompile GCHP, simply do

gcuser:~/Code.GCHP/build$ make -j # -j enables compiling in parallel

20 Chapter 5. Compile

GCHP, Release 14.2.0

and then optionally, make install.

Note: GNU compilers recompile GCHP faster than Intel compilers. This is because of how gfortran formats
Fortran modules files (*.mod files). Therefore, if you want to be able to recompile quickly, consider using GNU
compilers.

5.5 GCHP build options

These are persistent build setting that are set with cmake commands like

$ cmake . -D<NAME>="<VALUE>"

where <NAME> is the name of the build setting, and <VALUE> is the value you are assigning it. Below is the list of
build settings for GCHP.

RUNDIR Paths to run directories where make install installs GCHP. Multiple run directories can be specified
by a semicolon separated list. A warning is issues if one of these directories does not look like a run directory.

These paths can be relative paths or absolute paths. Relative paths are interpreted as relative to your build
directory.

CMAKE_BUILD_TYPE The build type. Valid values are Release, Debug, and RelWithDebInfo. Set this to
Debug if you want to build in debug mode.

CMAKE_PREFIX_PATH Extra directories that CMake will search when it’s looking for dependencies. Directories
in CMAKE_PREFIX_PATH have the highest precedence when CMake is searching for dependencies. Multiple
directories can be specified with a semicolon-separated list.

GEOSChem_Fortran_FLAGS_<COMPILER_ID> Compiler options for GEOS-Chem for all build types. Valid
values for <COMPILER_ID> are GNU and Intel.

GEOSChem_Fortran_FLAGS_<BUILD_TYPE>_<COMPILER_ID> Additional compiler options for GEOS-
Chem for build type <BUILD_TYPE>.

HEMCO_Fortran_FLAGS_<COMPILER_ID> Same as GEOSChem_Fortran_FLAGS_<COMPILER_ID>,
but for HEMCO.

HEMCO_Fortran_FLAGS_<BUILD_TYPE>_<COMPILER_ID> Same as GEOSChem_Fortran_FLAGS_<BUILD_TYPE>_<COMPILER_ID>,
but for HEMCO.

RRTMG Switch to enable/disable the RRTMG component.

OMP Switch to enable/disable OpenMP multithreading. As is standard in CMake (see if documentation) valid values
are ON, YES, Y, TRUE, or 1 (case-insensitive) and valid false values are their opposites.

INSTALLCOPY Similar to RUNDIR, except the directories do not need to be run directories.

5.5. GCHP build options 21

https://cmake.org/cmake/help/latest/command/if.html

GCHP, Release 14.2.0

22 Chapter 5. Compile

CHAPTER

SIX

CREATE A RUN DIRECTORY

Run directories are created with the createRunDir.sh script in the run/ subdirectory of the source code. Run
directories are version-specific, so you need to create new run directories for every GEOS-Chem version. The gist of
creating a run directory is simple: navigate to the run/ subdirectory, run ./createRunDir.sh, and answer the
prompts:

gcuser:~$ cd GCHP/run
gcuser:~/GCHP/run$./createRunDir.sh
... <answer the prompts> ...

Important: Use absolute paths when responding to prompts.

If you are unsure what a prompt is asking, see their explanations below, or ask a question on GitHub. After following
all prompts a run directory should be created for you with a confirmation message, and, you can move on to the next
section.

6.1 Explanations of Prompts

Below are detailed explanations of the prompts in ./createRunDir.sh.

6.1.1 Enter ExtData path

The first time you create a GCHP run directory on your system you will be prompted to register as a GEOS-Chem
user. Please provide this information so that we can track GEOS-Chem user groups around the world and get to know
what GEOS-Chem is used for.

Following registration you will be prompted for a path to GEOS-Chem shared data directories. The path should
include the name of your ExtData/ directory and should not contain symbolic links. The path you enter will be
stored in file .geoschem/config in your home directory as environment variable GC_DATA_ROOT. If that file
does not already exist it will be created for you. When creating additional run directories you will only be prompted
again if the file is missing or if the path within it is not valid.

Enter path for ExtData:

23

GCHP, Release 14.2.0

6.1.2 Choose a simulation type

Enter the integer number that is next to the simulation type you want to use.

Choose simulation type:

1. Full chemistry
2. TransportTracers
3. CO2 w/ CMS-Flux emissions
4. Tagged O3
5. Carbon

>>>

If creating a full chemistry run directory you will be given additional options. Enter the integer number that is next to
the simulation option you want to run.

Choose additional simulation option:

1. Standard
2. Benchmark
3. Complex SOA
4. Marine POA
5. Acid uptake on dust
6. TOMAS
7. APM
8. RRTMG

>>>

6.1.3 Choose meteorology source

Enter the integer number that is next to the input meteorology source you would like to use. The primary difference
between GEOS-FP and GEOS-FP native data is that the GEOS-FP native data includes the option to use C720 mass
fluxes or derived winds.

Choose meteorology source:

1. MERRA2 (Recommended)
2. GEOS-FP
3. GEOS-FP native data

>>>

6.1.4 Enter run directory path

Enter the target path where the run directory will be stored. You will be prompted to enter a new path if the one you
enter does not exist.

Enter path where the run directory will be created:

>>>

24 Chapter 6. Create a Run Directory

GCHP, Release 14.2.0

6.1.5 Enter run directory name

Enter the run directory name, or accept the default. You will be prompted for a new name if a run directory of the
same name already exists at the target path.

Enter run directory name, or press return to use default:

NOTE: This will be a subfolder of the path you entered above.

>>>

6.1.6 Enable version control (optional)

Enter whether you would like your run directory tracked with git version control. With version control you can keep
track of exactly what you changed relative to the original settings. This is useful for trouble-shooting as well as
tracking run directory feature changes you wish to migrate back to the standard model.

Do you want to track run directory changes with git? (y/n)

6.1. Explanations of Prompts 25

GCHP, Release 14.2.0

26 Chapter 6. Create a Run Directory

CHAPTER

SEVEN

DOWNLOAD INPUT DATA

Input data for GEOS-Chem is available at http://geoschemdata.wustl.edu/ExtData/.

The bashdatacatalog is the recommended for downloading and managing your GEOS-Chem input data. Refer to the
bashdatacatalog’s Instructions for GEOS-Chem Users. Below is a brief summary of using the bashdatacatalog for
aquiring GCHP input data.

7.1 Install the bashdatacatalog

Install the bashdatacatalog with the following command. Follow the prompts and restart your console.

gcuser:~$ bash <(curl -s https://raw.githubusercontent.com/LiamBindle/bashdatacatalog/
→˓main/install.sh)

Note: You can rerun this command to upgrade to the latest version.

7.2 Download Data Catalogs

Catalog files can be downloaded from http://geoschemdata.wustl.edu/ExtData/DataCatalogs/.

The catalog files define the input data collections that GEOS-Chem needs. There are four catalogs files:

• MeteorologicalInputs.csv – Meteorological input data collections

• ChemistryInputs.csv – Chemistry input data collections

• EmissionsInputs.csv – Emissions input data collections

• InitialConditions.csv – Initial conditions input data collections (restart files)

The latter 3 are version specific, so you need to download the catalogs for the version you intend to use (you can have
catalogs for multiple versions at the same time).

Create a directory to house your catalog files in the top-level of your GEOS-Chem input data directory (commonly
known as “ExtData”). You should create subdirectories for version-specific catalog files.

gcuser:~$ cd /ExtData # navigate to GEOS-Chem data
gcuser:/ExtData$ mkdir InputDataCatalogs # new directory for catalog files
gcuser:/ExtData$ mkdir InputDataCatalogs/13.3 # " for 13.3-specific catalogs
→˓(example)

Next, download the catalog for the appropriate version:

27

http://geoschemdata.wustl.edu/ExtData/
https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
http://geoschemdata.wustl.edu/ExtData/DataCatalogs/

GCHP, Release 14.2.0

gcuser:/ExtData$ cd InputDataCatalogs
gcuser:/ExtData/InputDataCatalogs$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/MeteorologicalInputs.csv
gcuser:/ExtData/InputDataCatalogs$ cd 13.3
gcuser:/ExtData/InputDataCatalogs/13.3$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/13.3/ChemistryInputs.csv
gcuser:/ExtData/InputDataCatalogs/13.3$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/13.3/EmissionsInputs.csv
gcuser:/ExtData/InputDataCatalogs/13.3$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/13.3/InitialConditions.csv

7.3 Fetching Metadata and Downloading Input Data

Important: You should always run bashdatacatalog commands from the top-level of your GEOS-Chem data directory
(the directory with HEMCO/, CHEM_INPUTS/, etc.).

Before you can run bashdatacatalog-list commands, you need to fetch the metadata of each collection. This
is done with the command bashdatacatalog-fetch whose arguments are catalog files:

gcuser:~$ cd /ExtData # IMPORTANT: navigate to top-level of GEOS-Chem input data
gcuser:/ExtData$ bashdatacatalog-fetch InputDataCatalogs/*.csv InputDataCatalogs/**/*.
→˓csv

Fetching downloads the latest metadata for every active collection in your catalogs. You should run
bashdatacatalog-fetch whenever you add or modify a catalog, as well as periodically so you get updates
to your collections (e.g., new meteorological data that is processed and added to the meteorological collections).

Now that you have fetched, you can run bashdatacatalog-list commands. You can tailor this command
the generate various types of file lists using its command-line arguments. See bashdatacatalog-list -h for
details. A common use case is generating a list of required input files that missing in your local file system.

gcuser:/ExtData$ bashdatacatalog-list -am -r 2018-06-30,2018-08-01 InputDataCatalogs/
→˓*.csv InputDataCatalogs/**/*.csv

Here, -a means “all” files (temporal files and static files), -m means “missing” (list files that are absent locally), -r
START,END is the date-range of your simulation (you should add an extra day before/after your simulation), and the
remaining arguments are the paths to your catalog files.

The command can be easily modified so that it generates a list of missing files that is compatible with xargs curl to
download all the files you are missing:

gcuser:/ExtData$ bashdatacatalog-list -am -r 2018-06-30,2018-08-01 -f xargs-curl
→˓InputDataCatalogs/*.csv InputDataCatalogs/**/*.csv | xargs curl

Here, -f xargs-curl means the output file list should be formatted for piping into xargs curl.

28 Chapter 7. Download Input Data

GCHP, Release 14.2.0

7.4 See Also

• bashdatacatalog - Instructions for GEOS-Chem Users

• bashdatacatalog - List of useful commands

• GEOS-Chem Input Data Catalogs

7.4. See Also 29

https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/LiamBindle/bashdatacatalog/wiki/3.-Useful-Commands
http://geoschemdata.wustl.edu/ExtData/DataCatalogs/

GCHP, Release 14.2.0

30 Chapter 7. Download Input Data

CHAPTER

EIGHT

RUN THE MODEL

Note: Another useful resource for instructions on running GCHP is our YouTube tutorial.

This page presents the basic information needed to run GCHP as well as how to verify a successful run and reuse a
run directory. A pre-run checklist is included here for easy reference. Please read the rest of this page to understand
these steps.

8.1 Pre-run checklist

Prior to running GCHP, always run through the following checklist to ensure everything is set up properly.

1. Start date is set in cap_restart

2. Executable gchp is present.

3. All symbolic links are valid (no broken links)

4. Settings are correct in setCommonRunSettings.sh

5. setRestartLink.sh runs without error (ensures restart file is available)

6. If running via a job scheduler, totals cores are the same in setCommonRunSettings.sh and the run script

7. If running interactively, you have available locally the total cores in setCommonRunSettings.sh

8.2 How to run GCHP

You can run GCHP locally from within your run directory (“interactively”) or by submitting your run to a job scheduler
if one is available. Either way, it is useful to put run commands into a reusable script we call the run script. Executing
the script will either run GCHP or submit a job that will run GCHP.

There is a symbolic link in the GCHP run directory called runScriptSamples that points to a directory in the
source code containing example run scripts. Each file includes extra commands that make the run process easier and
less prone to user error. These commands include:

1. Define a GCHP log file that includes start date configured in cap_restart in its name

2. Source environment file symbolic link gchp.env

3. Source config file setCommonRunSettings.sh to update commonly changed run settings

4. Set restart file symbolic link gchp_restart.nc4 to target file in Restarts subdirectory for configured
start date and grid resolution

31

https://www.youtube.com/watch?v=K6frcfCjpds

GCHP, Release 14.2.0

5. Check that cap_restart now contains end date of your run

6. Move the output restart file to the Restarts subdirectory

7. Rename the output restart file to include run start date and grid resolution (format GEOSChem.Restarts.
YYYYMMDD_HHmmz.cN.nc4)

8.2.1 Run interactively

Copy or adapt example run script gchp.local.run to run GCHP locally on your machine. Before running, make
sure the total number of cores configured in setCommonRunSettings.sh is available locally. It must be at least
6.

To run, type the following at the command prompt:

$./gchp.local.run

Standard output will be displayed on your screen in addition to being sent to a log file with filename format gchp.
YYYYMMDD_HHmmSSz.log. The HEMCO log output is also included in this file.

8.2.2 Run as batch job

Batch job run scripts will vary based on what job scheduler you have available. We offer a template batch job run
script in the runScriptSamples subdirectory called gchp.batch_job.sh. This file contains examples for 3
types of job scheduler: SLURM, LSF, and PBS. You may copy and adapt this file for your system and preferences as
needed.

At the top of all batch job scripts are configurable run settings. Most critically are requested # cores, # nodes, time,
and memory. Figuring out the optimal values for your run can take some trial and error. See hardware requirements
for guidance on what to choose. The more cores you request the faster GCHP will run given the same grid resolution.
Configurable job scheduler settings and acceptable formats are often accessible from the command line. For example,
type man sbatch to scroll through configurable options for SLURM, including various ways of specifying number
of cores, time and memory requested.

To submit a batch job using a run script called gchp.run and the SLURM job scheduler:

$ sbatch gchp.run

To submit using Grid Engine instead of SLURM:

$ qsub gchp.run

If your computational cluster uses a different job scheduler, check with your IT staff or search the internet for how to
configure and submit batch jobs on your system.

8.3 Verify a successful run

Standard output and standard error will be sent to a file specific to your scheduler, e.g. slurm-jobid.out, unless
you configured your run script to send it to a different log file. Variable log is defined in the template run script as
gchp.YYYYMMDD_HHmmSSz.log if you wish to use it. The date string in the log filename is the start date of your
simulation as configured in cap_restart. This log is automatically used if you execute the interactive run script
example gchp.local.run.

There are several ways to verify that your run was successful. Here are just a few:

32 Chapter 8. Run the model

GCHP, Release 14.2.0

1. The GCHP log file shows every timestep (search for AGCM Date) and ends with timing information.

2. NetCDF files are present in the OutputDir/ subdirectory.

3. There is a restart file corresponding to your end date in the Restarts subdirectory.

4. The start date in cap_restart has been updated to your run end date.

5. The job scheduler log does not contain any error messages.

6. Output file allPEs.log does not contain any error messages.

If it looks like something went wrong, scan through the log files to determine where there may have been an error.
Here are a few debugging tips:

• Review all of your configuration files to ensure you have proper setup, especially setCommonRunSettings.
sh.

• “MAPL_Cap” or “CAP” errors in the run log typically indicate an error with your start time and/or duration.
Check cap_restart and setCommonRunSettings.sh.

• “MAPL_ExtData” or “ExtData” errors in the run log indicate an error with your input files. Check
HEMCO_Config.rc and ExtData.rc.

• “MAPL_HistoryGridComp” or “History” errors in the run log are related to your configured diagnostics. Check
HISTORY.rc.

• Change the warnings and verbose options in HEMCO_Config.rc to 3 and rerun

• Change the root_level settings for CAP.ExtData in logging.yml to DEBUG and rerun

• Recompile the model with cmake option -DCMAKE_BUILD_TYPE=Debug and rerun.

If you cannot figure out where the problem is then please create a GCHP GitHub issue.

8.4 Reuse a run directory

8.4.1 Archive run output

Reusing a GCHP run directory comes with the perils of losing your old work. To mitigate this issue there is utility
shell script archiveRun.sh. This script archives data output and configuration files to a subdirectory that will not
be deleted if you clean your run directory.

Archiving runs is useful for other reasons as well, including:

• Save all settings and logs for later reference after a run crashes

• Generate data from the same executable using different run-time settings for comparison, e.g. c48 versus c180

• Run short runs to compare for debugging

To archive a run, pass the archive script a descriptive subdirectory name where data will be archived. For example:

$./archiveRun.sh 1mo_c24_24hrdiag

Which files are copied and to where will be displayed on the screen. Diagnostic files in the OutputDir/ directory
will be moved rather than copied so as not to duplicate large files. Restart files will not be archived. If you would like
include restart files in the archive you must manually copy or move them.

8.4. Reuse a run directory 33

GCHP, Release 14.2.0

8.4.2 Clean a run directory

It is good practice to clean your run directory prior to your next run if starting on the same date. This avoids confusion
about what output was generated when and with what settings. To make run directory cleaning simple we provide
utility shell script cleanRunDir.sh. To clean the run directory simply execute this script.

$./cleanRunDir.sh

All GCHP output diagnostic files and logs, including NetCDF files in OutputDir/, will be deleted. Restart files in
the Restarts subdirectory will not be deleted.

34 Chapter 8. Run the model

CHAPTER

NINE

CONFIGURATION FILES

All GCHP run directories have default simulation-specific run-time settings that are set in the configuration files. This
section gives an high-level overview of all run directory configuration files used at run-time in GCHP, followed by
links to detailed descriptions if you wish to learn more.

Note: The many configuration files in GCHP can be overwhelming. However, you should be able to accomplish most
if not all of what you wish to configure from one place in setCommonRunSettings.sh. That file is a bash script
used to configure settings in other files from one place.

9.1 High-level summary

This high-level summary of GCHP configuration files gives a short description of each file.

setCommonRunSettings.sh This file is a bash script that includes commonly changed run settings. It makes
it easier to manage configuring GCHP since settings can be changed from one file rather than across multiple
configuration files. When this file is executed it updates settings in other configuration files, overwriting what is
there. Please get very familiar with the options in setCommonRunSettings.sh and be conscientious about
not updating the same setting elsewhere.

GCHP.rc Controls high-level aspects of the simulation, including grid type and resolution, core distribution,
stretched-grid parameters, timesteps, and restart filename.

CAP.rc Controls parameters used by the highest level gridded component (CAP). This includes simulation run time
information, name of the Root gridded component (GCHP), config filenames for Root and History, and toggles
for certain MAPL logging utilities (timers, memory, and import/export name printing).

ExtData.rc Config file for the MAPL ExtData component. Specifies input variable information, including name,
regridding method, read frequency, offset, scaling, and file path. All GCHP imports must be specified in this
file. Toggles at the top of the file enable MAPL ExtData debug prints and using most recent year if current year
of data is unavailable. Default values may be used by specifying file path /dev/null.

geoschem_config.yml Primary config file for GEOS-Chem. Same file format as in GEOS-Chem Classic but
containing only options relevant to GCHP.

HEMCO_Config.rc Contains emissions information used by HEMCO. Same function as in GEOS-Chem Classic
except only HEMCO name, species, scale IDs, category, and hierarchy are used. Diagnostic frequency, file path,
read frequency, and units are ignored, and are instead stored in GCHP config file ExtData.rc. All HEMCO
variables listed in HEMCO_Config.rc for enabled emissions must also have an entry in ExtData.rc.

input.nml Namelist used in advection for domain stack size and stretched grid parameters.

35

GCHP, Release 14.2.0

logging.yml Config file for the NASA pFlogger package included in GCHP for logging. This package uses a
hierarchy of loggers, such as info, warnings, error, and debug, to extract non-GEOS-Chem information about
GCHP runs and print it to log file allPEs.log.

HISTORY.rc Config file for the MAPL History component. It configures diagnostic output from GCHP.

HEMCO_Diagn.rc Contains information mapping HISTORY.rc diagnostic names to HEMCO containers. Same
function as in GEOS-Chem Classic except that not all items in HEMCO_Diagn.rc will be output; only emis-
sions listed in HISTORY.rc will be included in diagnostics. All GCHP diagnostics listed in HISTORY.rc
that start with Emis, Hco, or Inv must have a corresponding entry in HEMCO_Diagn.rc.

9.2 Additional resources

Detailed information about each file can be found in the below list of links. You can also reach these pages by
continuing with the “next” buttons in this user guide.

9.2.1 setCommonRunSettings.sh

This file is a bash script to specify run-time values for commonly changed settings and update other configuration files
that set them. This is intended as a helper script to make configuring GCHP runs easier. There are four sections of the
file: (1) configuration, (2) error checks, (3) helper functions, and (4) update files.

The configuration section is usually the only part of the file you need to look at. The configuration section itself is
divided into two parts. The first part contains the most frequently changed settings. Categories are:

• Compute resources

• Grid resolution

• Stretched grid

• Simulation duration

• GEOS-Chem components

• Diagnostics

• Mid-run checkpoint files

The second part contains settings that are less frequently changed but that are still convenient to update from one place.
These include:

• Model phase (e.g. adjoint)

• Timesteps

• Online dust mass tuning factor

• Domain decomposition

The entire configuration section contains many comments with instructions on how to change the settings and what
the options are. Please see that file for more information.

The error checks section is a holdover from the earlier design of GCHP run directories. This section checks to make
sure your run directory settings make sense and will not cause an early crash due to a simple mistake, such as a
core count that is not divisible by 6. This section will be moving to file checkRunSetting.sh that is in your
run directory but that is currently just a placeholder. Eventually that script will be able to be run separately from
setCommonRunSettings.sh as a quick check prior to doing a run.

36 Chapter 9. Configuration files

GCHP, Release 14.2.0

The helper functions section contains several functions to simplify updating configuration files based on the settings
you specified in the configurations section earlier in the script. Some of the functions are general, such as printing
a message during file update based on if the script was passed optional argument --verbose. Other functions are
specialized, such as replacing met-field read frequency in ExtData.rc based on the model timestep.

The update files section changes settings in other configuration files based on what you set in the configurables section.
You can browse this section to see exactly what files are changed. You can also view this information by running the
script with the --verbose option.

Using the setCommonRunSettings.sh script is technically optional to run GCHP. However, we highly recom-
mend using it to avoid mistakes in your run directory setup. Knowing which configuration files need to be changed
for which run-time settings and then changing them all manually is cumbersome and error-prone. We hope that using
this file will make it easier to use GCHP without making mistakes.

9.2.2 GCHP.rc

GCHP.rc is the resource configuration file for the ROOT component within GCHP. The ROOT gridded component
includes three children gridded components, including one each for GEOS-Chem, FV3 advection, and the data utility
environment needed to support them.

NX, NY Number of grid cells in the two MPI sub-domain dimensions. NX * NY must equal the number of CPUs.
NY must be a multiple of 6.

GCHP.GRID_TYPE Type of grid GCHP will be run at. Should always be Cubed-Sphere.

GCHP.GRIDNAME Descriptive grid label for the simulation. The default grid name is PE24x144-CF. The grid
name includes how the pole is treated, the face side length, the face side length times six, and whether it is a
Cubed Sphere Grid or Lat/Lon. The name PE24x144-CF indicates polar edge (PE), 24 cells along one face side,
144 for 24*6, and a cubed-sphere grid (CF). Many options here are defined in MAPL_Generic.

Note: Must be consistent with IM and JM.

GCHP.NF Number of cubed-sphere faces. This is set to 6.

GCHP.IM_WORLD Number of grid cells on the side of a single cubed sphere face.

GCHP.IM Number of grid cells on the side of a single cubed sphere face.

GCHP.JM Number of grid cells on one side of a cubed sphere face, times 6. This represents a second dimension if
all six faces are stacked in a 2-dimensional array. Must be equal to IM*6.

GCHP.LM Number of vertical grid cells. This must be equal to the vertical resolution of the offline meteorological
fields (72) since MAPL cannot regrid vertically.

GCHP.STRETCH_FACTOR Ratio of configured global resolution to resolution of targeted high resolution region
if using stretched grid.

GCHP.TARGET_LON Target longitude for high resolution region if using stretched grid.

GCHP.TARGET_LAT Target latitude for high resolution region if using stretched grid.

IM Same as GCHP.IM and GCHP.IM_WORLD.

JM Same as GCHP.JM.

LM Same as GCHP.LM.

GEOChem_CTM If set to 1, tells FVdycore that it is operating as a transport model rather than a prognostic model.

AdvCore_Advection Toggles offline advection. 0 is off, and 1 is on.

9.2. Additional resources 37

GCHP, Release 14.2.0

DYCORE Should either be set to OFF (default) or ON. This value does nothing, but MAPL will crash if it is not
declared.

HEARTBEAT_DT The timestep in seconds that the DYCORE Component should be called. This must be a multiple
of HEARTBEAT_DT in CAP.rc.

SOLAR_DT The timestep in seconds that the SOLAR Component should be called. This must be a multiple of
HEARTBEAT_DT in CAP.rc.

IRRAD_DT The timestep in seconds that the IRRAD Component should be called. ESMF checks this value during
its timestep check. This must be a multiple of HEARTBEAT_DT in CAP.rc.

RUN_DT The timestep in seconds that the RUN Component should be called.

GCHPchem_DT The timestep in seconds that the GCHPchem Component should be called. This must be a multiple
of HEARTBEAT_DT in CAP.rc.

RRTMG_DT The timestep in seconds that RRTMG should be called. This must be a multiple of HEARTBEAT_DT
in CAP.rc.

DYNAMICS_DT The timestep in seconds that the FV3 advection Component should be called. This must be a
multiple of HEARTBEAT_DT in CAP.rc.

SOLARAvrg, IRRADAvrg Default is 0.

GCHPchem_REFERENCE_TIME HHMMSS reference time used for GCHPchem MAPL alarms.

PRINTRC Specifies which resource values to print. Options include 0: non-default values, and 1: all values. Default
setting is 0.

PARALLEL_READFORCING Enables or disables parallel I/O processes when writing the restart files. Default
value is 0 (disabled).

NUM_READERS, NUM_WRITERS Number of simultaneous readers. Should divide evenly unto NY. Default
value is 1.

BKG_FREQUENCY Active observer when desired. Default value is 0.

RECORD_FREQUENCY Frequency of periodic restart file write in format HHMMSS.

RECORD_REF_DATE Reference date(s) used to determine when to write periodic restart files.

RECORD_REF_TIME Reference time(s) used to determine when to write periodic restart files.

GCHOchem_INTERNAL_RESTART_FILE The filename of the internal restart file to be written.

GCHPchem_INTERNAL_RESTART_TYPE The format of the internal restart file. Valid types include pbinary
and pnc4. Only use pnc4 with GCHP.

GCHPchem_INTERNAL_CHECKPOINT_FILE The filename of the internal checkpoint file to be written.

GCHPchem_INTERNAL_CHECKPOINT_TYPE The format of the internal checkstart file. Valid types include
pbinary and pnc4. Only use pnc4 with GCHP.

GCHPchem_INTERNAL_HEADER Only needed when the file type is set to pbinary. Specifies if a binary file is
self-describing.

DYN_INTERNAL_RESTART_FILE The filename of the DYNAMICS internal restart file to be written. Please
note that FV3 is not configured in GCHP to use an internal state and therefore will not have a restart file.

DYN_INTERNAL_RESTART_TYPE The format of the DYNAMICS internal restart file. Valid types include pbi-
nary and pnc4. Please note that FV3 is not configured in GCHP to use an internal state and therefore will not
have a restart file.

DYN_INTERNAL_CHECKPOINT_FILE The filename of the DYNAMICS internal checkpoint file to be written.
Please note that FV3 is not configured in GCHP to use an internal state and therefore will not have a restart file.

38 Chapter 9. Configuration files

GCHP, Release 14.2.0

DYN_INTERNAL_CHECKPOINT_TYPE The format of the DYNAMICS internal checkpoint file. Valid types
include pbinary and pnc4. Please note that FV3 is not configured in GCHP to use an internal state and therefore
will not have a restart file.

DYN_INTERNAL_HEADER Only needed when the file type is set to pbinary. Specifies if a binary file is self-
describing.

RUN_PHASES GCHP uses only one run phase. The GCHP gridded component for chemistry, however, has the
capability of two. The two-phase feature is used only in GEOS.

HEMCO_CONFIG Name of the HEMCO configuration file. Default is HEMCO_Config.rc in GCHP.

STDOUT_LOGFILE Log filename template. Default is PET%%%%%.GEOSCHEMchem.log. This file is not actu-
ally used for primary standard output.

STDOUT_LOGLUN Logical unit number for stdout. Default value is 700.

MEMORY_DEBUG_LEVEL Toggle for memory debugging. Default is 0 (off).

WRITE_RESTART_BY_OSERVER Determines whether MAPL restart write should use o-server. This must be
set to YES for high core count (>1000) runs to avoid hanging during file write. It is NO by default.

9.2.3 CAP.rc

CAP.rc is the configuration file for the top-level gridded component called CAP. This gridded component can be
thought of as the primary driver of GCHP. Its config file handles general runtime settings for GCHP including
time parameters, performance profiling routines, and system-wide timestep (hearbeat). Combined with output file
cap_restart, CAP.rc configures the exact dates for the next GCHP run.

ROOT_NAME Sets the name MAPL uses to initialize the ROOT child gridded component component within CAP.
CAP uses this name in all operations when querying and interacting with ROOT. It is set to GCHP.

ROOT_CF Resource configuration file for the ROOT component. It is set to GCHP.rc.

HIST_CF Resource configuration file for the MAPL HISTORY gridded component (another child gridded compo-
nent of CAP). It is set to HISTORY.rc.

BEG_DATE Simulation begin date in format YYYYMMDD hhmmss. This parameter is overrided in the presence
of output file cap_restart containing a different start date.

END_DATE Simulation end date in format YYYYMMDD hhmmss. If BEG_DATE plus duration (JOB_SGMT) is
before END_DATE then simulation will end at BEG_DATE + JOB_SGMT. If it is after then simulation will
end at END_DATE.

JOB_SGMT Simulation duration in format YYYYMMDD hhmmss. The duration must be less than or equal to the
difference between start and end date or the model will crash.

HEARTBEAT_DT The timestep of the ESMF/MAPL internal clock, in seconds. All other timesteps in GCHP must
be a multiple of HEARTBEAT_DT. ESMF queries all components at each heartbeat to determine if computation
is needed. The result is based upon individual component timesteps defined in GCHP.rc.

MAPL_ENABLE_TIMERS Toggles printed output of runtime MAPL timing profilers. This is set to YES. Timing
profiles are output at the end of every GCHP run.

MAPL_ENABLE_MEMUTILS Enables runtime output of the programs’ memory usage. This is set to YES.

PRINTSPEC Allows an abbreviated model run limited to initializat and print of Import and Export state variable
names. Options include:

• 0 (default): Off

• 1: Imports and Exports only

9.2. Additional resources 39

GCHP, Release 14.2.0

• 2: Imports only

• 3: Exports only

USE_SHMEM This setting is deprecated but still has an entry in the file.

REVERSE_TIME Enables running time backwards in CAP. Default is 0 (off).

USE_EXTDATA2G Enables using the next generation of MAPL ExtData (input component) which uses a yaml-
format configuration file. Default is .FALSE. (off).

9.2.4 ExtData.rc

ExtData.rc contains input variable and file read information for GCHP. Explanatory information about the file is
located at the top of the configuration file in all run directories. The file format is the same as that used in the GEOS
model, and GMAO/NASA documentation for it can be found at the ExtData component page on the GEOS-5 wiki.
Note that this file will be retired in GCHP v15.0 when MAPL version 3 is integrated into GCHP. It will be replaced
with a YAML format file with a simplified and easier to understand interface.

The ins and outs of ExtData.rc can be hard to grasp, particular with regards to variable data updating, time interpo-
lation, and file read. Reach out on the GCHP GitHub Issues page if you need help. See also the GCHP ReadTheDocs
page on enabling ExtData prints for debugging. Enabling ExtData debug prints is the best way to determine what
MAPL is doing for file I/O per import.

The following parameter is set at the top of the file:

Ext_AllowExtrap Logical toggle to use data from nearest year available, including meteorology if files for the sim-
ulation year are not found. This is set to true for GCHP. Note that GEOS-Chem Classic accomplishes the same
effect but with more flexibility in HEMCO_Config.rc, and the entries of HEMCO_Config.rc which do this
are ignored in GCHP.

The rest of the file contains whitespace-delimited lines. Each line describes one data variable imported to the model
from an external file. Columns are as follows in order from left to right:

Name Name of the field stored in the MAPL Imports container. This is independent of the name of the data field
in the input file. For the case of entries that also appear in HEMCO_Config.rc it is also the name of the
HEMCO emissions container (left-most column in that file). For those fields it is used to match scaling and
masking information in HEMCO_Config.rc with file I/O information in ExtData.rc. All file I/O informa-
tion HEMCO_Config.rc, including filename, units, dimensions, regridding, and read frequency are ignored
by GCHP.

Units Unit string of the import. This entry is informational only.

Clim Whether the data is climatology. Enter Y if the data is a 12 month climatology, enter year if the data is daily
climatology (i.e. 2019), D if the file is monthly day-of-week scale factors (7 values for each of 12 months), or
N for all other cases. If you specify monthly climatology then the data must be stored in either 1 or 12 files.

Conservative Method to regrid the input data to the simulation grid. Enter Y to use mass conserving regridding,
F;{VALUE} for fractional regridding, or N to use non-conervative bilinear regridding.

Refresh Time template for updating data. This tells MAPL when to look for new data values. It stores previous and
next time data in what are called left and right brackets. There are several options for specifying refresh:

• - : Update variable data only once. Use this if the data is constant in time.

• 0 : Update variable data at every timestep using linear interpolation. For example, if the data is hourly
then MAPL will linearly interpolate between the previous and next hour’s data for every timestep.

• 0:003000 (or other HHMMSS specification for hours, minutes, seconds) : Use specified time offset (i.e.
30 minutes in this example) for setting previous and next time, and interpolate every timestep between the
two. This is useful if, for example, you have time-averaged hourly data and you want the previous and next

40 Chapter 9. Configuration files

GCHP, Release 14.2.0

times to update half-way between the hour. This format is used for meteorology fields that are interpolated
every timestep, specifically temperature and surface pressure.

• F0:003000 (or other HHMMSS specification for hours, minutes, seconds) : Like the previous option ex-
cept there is no time interpolation. This format is used for meteorology fields that are not time-interpolated,
such as cloud fraction.

• %y4-%m2-%h2T%h2:%n2:00 (or other combination of time tokens) : Update variable data when time
tokens change. Interpreting this entry gets a little tricky. The data will be updated when the time tokens
change, not the hard-coded times. For example, a template in the form %y4-%m2-%d2T12:00:00
changes at the start of each day because that is when the evaluation of %y4-%m2-%d2 changes. While
the variable will be updated at the start of a new day (e.g. at time 2019-01-02 00:00:00), the time used for
reading and interpolation is hour 12 of that day. You can similar hard-code year, month, day, or hour if
you always want to use a constant value for that field.

• F%y4-%m2-%h2T%h2:%n2:00 (or other combination of time tokens) : Like the previous option except
that there is no time interpolation.

Offset Factor Value the data will be shifted by upon read. Use none for no shifting.

Scale Factor Value the data will be scaled by upon read. This is useful if you want to convert units upon read, such
as from Pa to hPa. Use none for no scaling.

External File Variable Name of the variable to read in the netCDF data file.

External File Template Path to the netCDF data file, including time tokens as needed (%y4 for year, %m2 for month,
%d2 for day, %h2 for hour, %n2 for minutes). If there are no time tokens in the template name then ExtData
will assume that all the data is in one file. If you wish to ignore an entry in ExtData.rc (i.e. not read the data
at all since you will not use it) then put /dev/null. This will save processing time.

Reference Time and Period (optional) Period of data with reference time. This optional entry is useful if you have
data frequency that is offset from midnight. For example, 3-hourly data available for times 1:30, 4:30, 7:30, etc.
The reference time could be specified as 2000-01-01T01:30:00P03:00. The first part (before P) is the
reference date (must be on or before your simulation start), and the second part (after P) is the period of data
availability (in this case 3 hours). This can be used in combination with the file template containing hours and
minutes. It tells MAPL to only read the file at times that are regular 3 hr intervals from the reference date and
time. Not including this would cause MAPL to read the file every minute if the file template contains the n2
time token.

9.2.5 geoschem_config.yml

Information about the geoschem_config.yml file is the same as for GEOS-Chem Classic with a few exceptions.
See the geoschem_config.yml file wiki page for an overview of the file.

The geoschem_config.yml file used in GCHP is different in the following ways:

• Start/End datetimes are ignored. Set this information in CAP.rc instead.

• Root data directory is ignored. All data paths are specified in ExtData.rc instead with the exception of the
FAST-JX data directory which is still listed (and used) in geoschem_config.yml.

• Met field is ignored. Met field source is described in file paths in ExtData.rc.

• GC classic timers setting is ineffectual. GEOS-Chem Classic timers code is not compiled when building GCHP.

Other parts of the GEOS-Chem Classic geoschem_config.yml file that are not relevant to GCHP are simply not
included in the file that is copied to the GCHP run directory.

9.2. Additional resources 41

GCHP, Release 14.2.0

9.2.6 HEMCO_Config.rc

Like geoschem_config.yml, information about the HEMCO_Config.rc file is the same as for GEOS-Chem
Classic with a few exceptions. Refer to the HEMCO documentation for an overview of the file.

Some content of the HEMCO_Config.rc file is ignored by GCHP. This is because MAPL ExtData handles file input
rather than HEMCO in GCHP.

Items at the top of the file that are ignored include:

• ROOT data directory path

• METDIR path

• DiagnPrefix

• DiagnFreq

• Wildcard

In the BASE EMISSIONS section and beyond, columns that are ignored include:

• sourceFile

• sourceVar

• sourceTime

• C/R/E

• SrcDim

• SrcUnit

All of the above information is specified in file ExtData.rc instead with the exception of diagnostic prefix and
frequency. Diagnostic filename and frequency information is specified in HISTORY.rc.

9.2.7 input.nml

input.nml controls specific aspects of the FV3 dynamical core used for advection. Entries in input.nml are described
below.

&fms_nml Header for the FMS namelist which includes all variables directly below the header.

print_memory_usage Toggles memory usage prints to log. However, in practice turning it on or off does not have
any effect.

domain_stack_size Domain stack size in bytes. This is set to 20000000 in GCHP to be large enough to use very
few cores in a high resolution run. If the domain size is too small then you will get an “mpp domain stack size
overflow error” in advection. If this happens, try increasing the domain stack size in this file.

&fv_core_nml Header for the finite-volume dynamical core namelist. This is commented out by default unless
running on a stretched grid. Due to the way the file is read, commenting out the header declaration requires an
additional comment character within the string, e.g. #&fv#_core_nml.

do_schmidt Logical for whether to use Schmidt advection. Set to .true. if using stretched grid; otherwise this entry
is commented out.

stretch_fac Stretched grid factor, equal to the ratio of grid resolution in targeted high resolution region to the config-
ured run resolution. This is commented out if not using stretched grid.

target_lat Target latitude of high resolution region if using stretched grid. This is commented out if not using stretched
grid.

42 Chapter 9. Configuration files

GCHP, Release 14.2.0

target_lon Target longitude of high resolution region if using stretched grid. This is commented out if not using
stretched grid.

9.2.8 logging.yml

The logging.yml file is the configuration file for the pFlogger logging package used in GCHP. This package is
a Fortran logger written and maintained by NASA Goddard. The pFlogger package is based on python logging and
contains functions and classes that enable flexible event logging within GCHP components, including MAPL ExtData
which handles input read.

GCHP logging is not the same as GEOS-Chem and HEMCO prints that go to the main GCHP log. It is hierarchical
based on the severity of the event, with the level of severity per component used as criteria to print to the log file. The
logging messages are sent to a separate file from the main GCHP log. The filename is specified in logging.yml as
allPEs.log by default in the definition of the mpi_shared file handler.

Like the python logger, there are five levels of severity used to trigger messages. These are as follows, in order of most
to least severe:

1. CRITICAL

2. ERROR

3. WARNING

4. INFO

5. DEBUG

These levels are hierarchical, meaning each level triggers writing messages for all events with greater or equal severity.
For example, if you specify CRITICAL you will get only messages triggered with that criteria since it is the most
severe level. If you instead specify WARNING then you will trigger all events categorized as WARNING, ERROR, and
CRITICAL.

Different GCHP components can have different levels of severity. These components are listed in the loggers
section of the file. This helps hone in on problems you are experiencing in a specific component by allowing you
to increase logger messages for one component only. This is particularly useful for debugging the component called
CAP.EXTDATA in logging.yml which corresponds to the MAPL component that handles reading and regridding
input files. When you experience a problem reading input files we recommend that you set the logger level for this
component to DEBUG.

In addition to setting severity level per component you can also specify severity level based on processor. There are
two options: root thread only and all threads. The root thread only option is root_level in the configuration file
and will only trigger messages if the event is executed by the root processor. Using this option keeps the log file size
down and can make reading the file easier. We recommend setting this option to DEBUG when investigating problems
with input files.

The all threads option will log events for all processors. Each message will be prefixed by the processor number, e.g.
0000 for the root thread, 0001 for the next, and so on. Using this option can make the file size very large and difficult
to read. However, you can grep the file for a processor number to isolate events of just one thread of interest, such as
the one that appears in error message traceback.

For more information on the GCHP logger, including more advanced features, see documentation at https://github.
com/Goddard-Fortran-Ecosystem/pFlogger/.

9.2. Additional resources 43

https://github.com/Goddard-Fortran-Ecosystem/pFlogger/
https://github.com/Goddard-Fortran-Ecosystem/pFlogger/

GCHP, Release 14.2.0

9.2.9 HISTORY.rc

HISTORY.rc is the file that configures GCHP’s output. It has the following format

EXPID: OutputDir/GCHP
EXPDSC: GEOS-Chem_devel
CoresPerNode: 30
VERSION: 1

<DEFINE GRID LABELS>

<DEFINE ACTIVE COLLECTIONS>

<DEFINE COLLECTIONS>

EXPID This is the file prefix for all collections. OutputDir/GCHP means that collections will be to a
direcotry named OutputDir/, and the file names will start with GCHP.

CoresPerNode The number of cores per node for your GCHP simulation.

EXPDSC Leave this as it is.

VERSION Leave this as it is.

The format and description of <DEFINE GRID LABELS>, <DEFINE ACTIVE COLLECTIONS>, and and <DEFINE
COLLECTIONS> sections are given below.

Defining Grid Labels

You can specify custom grids for your output. For example, a regional 0.05°x0.05° grid covering North America. This
way your collections are regridded online. There are two advantages to doing this:

1. It eliminates the need to regrid your simulation data in a post-processing step.

2. It saves disk space if you are interested in regional output.

Beware that outputting data on a different grid assumes the data is independent of horizontal cell size. The regridding
routines are area-conserving and thus regridded values will only make sense for data that is area-independent. Exam-
ples of data units that are area-independent are mixing ratios (e.g. kg/kg or mol/mol) and emissions rates per area (e.g.
kg/m2/s). Examples of data units that are NOT area-independent are kg/s and m2, or any other unit that implicitly
is per grid cell area. This sort of unit is most common in the meteorology diagnostics, such as Met_AREAM2 and
Met_AD. The values of these arrays will be incorrect in non-native grid output.

You can define as many grids as you want. A collection can define grid_label to select a custom grid. If a
collection does not define grid_label the simulation’s grid is assumed.

Below is the format for the <DEFINE GRID LABELS> section in HISTORY.rc.

GRID_LABELS: MY_FIRST_GRID # My custom grid for C96 output
MY_SECOND_GRID # My custom grid for global 0.5x0.625 output
MY_THIRD_GRID # My custom grid for regional 0.05x0.05 output

::
MY_FIRST_GRID.GRID_TYPE: Cubed-Sphere
MY_FIRST_GRID.IM_WORLD: 96
MY_FIRST_GRID.JM_WORLD: 576 # 576=6x96

MY_SECOND_GRID.GRID_TYPE: LatLon
MY_SECOND_GRID.IM_WORLD: 360
MY_SECOND_GRID.JM_WORLD: 181

(continues on next page)

44 Chapter 9. Configuration files

GCHP, Release 14.2.0

(continued from previous page)

MY_SECOND_GRID.POLE: PC # pole-centered
MY_SECOND_GRID.DATELINE: DC # dateline-centered

MY_THIRD_GRID.GRID_TYPE: LatLon
MY_THIRD_GRID.IM_WORLD: 80
MY_THIRD_GRID.JM_WORLD: 40
MY_THIRD_GRID.POLE: XY
MY_THIRD_GRID.DATELINE: XY
MY_THIRD_GRID.LON_RANGE: 0 80 # regional boundaries
MY_THIRD_GRID.LAT_RANGE: -30 10

SPEC NAMES

GRID_TYPE The type of grid. Valid options are Cubed-Sphere or LatLon.

IM_WORLD The number of grid boxes in the i-dimension. For a LatLon grid this is the number of
longitude grid-boxes. For a Cubed-Sphere grid this is the cubed-sphere size (e.g., 48 for C48).

JM_WORLD The number of grid boxes in the j-dimension. For a LatLon grid this is the number of
latitude grid-boxes. For a Cubed-Sphere grid this is six times the cubed-sphere size (e.g., 288
for C48).

POLE Required if the grid type is LatLon. POLE defines the latitude coordinates of the grid. For global
lat-lon grids the valid options are PC (pole-centered) or PE (polar-edge). Here, “center” or “edge”
refers to whether the grid has boxes that are centered on the poles, or whether the grid has boxes
with edges at the poles. For regional grids POLE should be set to XY and the grid will have boxes
with edges at the regional boundaries.

DATELINE Required if the grid type is LatLon. DATELINE defines the longitude coordinates of the
grid. For global lat-lon grids the valid options are DC (dateline-centered), DE (dateline-edge), GC
(grenwich-centered), or GE (grenwich-edge). If DC or DE, then the longitude coordinates will span
(-180°, 180°). If GC or GE, then the longitude coordinates will span (0°, 360°). Similar to POLE,
“center” or “edge” refer to whether the grid has boxes that are centered at -180° or 0°, or whether
the grid has boxes with edges at -180° or 0°. For regional grids DATELINE should be set to XY and
the grid will have boxes with edges at the regional boundaries.

LON_RANGE Required for regional LatLon grids. LON_RANGE defines the longitude bounds of the
regional grid.

LAT_RANGE Required for regional LatLon grids. LAT_RANGE defines the latitude bounds of the
regional grid.

Defining Active Collections

Collections are activated by defining them in the COLLECTIONS list. For instructions on defining collections, see
Defining Collections.

Below is the format for the <DEFINE ACTIVE COLLECTIONS> section of HISTORY.rc.

COLLECTIONS: 'MyCollection1',
'MyCollection2',

::

This example activates collections named “MyCollection1” and “MyCollection2”.

9.2. Additional resources 45

GCHP, Release 14.2.0

Defining Collections

A collection is

MyCollection1.template: '%y4%m2%d2_%h2%n2z.nc4',
MyCollection1.format: 'CFIO',
MyCollection1.frequency: 010000
MyCollection1.duration: 240000
MyCollection1.mode: 'time-averaged'
MyCollection1.fields: 'SpeciesConc_O3 ', 'GCHPchem',

'SpeciesConc_NO ', 'GCHPchem',
'SpeciesConc_NO2 ', 'GCHPchem',
'Met_BXHEIGHT ', 'GCHPchem',
'Met_AIRDEN ', 'GCHPchem',
'Met_AD ', 'GCHPchem',

::
<DEFINE MORE COLLECTIONS ...>

Output file configuration

template This is the file name suffix for the collection. The path to the collection’s files is obtained by
concatenating EXPID with the collection name and the value of template.

format Defines the file format of the collection. Valid values are 'CFIO' for CF compliant NetCDF
(recommended), or 'flat' for GrADS style flat files.

duration Defines the frequency at which files are generated. The format is HHMMSS. For example,
1680000 means that a file is generated every 168 hours (7 days).

monthly [optional] Set to 1 for monthly output. One file per month is generated. If mode is
time-averaged, the variables in the collection are 1-month time averages.

duration and frequency are not required if monthly: 1.

timeStampStart [optional] Only used if mode is 'time-averaged'. If .true. the file is times-
tamped according to the start of the accumulation interval (which depends on frequency,
ref_date, and ref_time). If .false. the file is timestamped according to the middle of
the accumulation interval. If timeStampStart is not set then the default value is false.

Sampling configuration

mode Defines the sampling method. Valid values are 'time-averaged' or 'instantaneous'.

frequency Defines the time frequency of collection’s data. Said another way, this defines the time sep-
aration (time step) of the time coordinate for the collection. The format is HHMMSS. For example,
010000 means that the collection’s time coordinate will have a 1-hour time step. If frequency
is less than duration multiple time steps are written to each file.

acc_interval [optional] Only valid if mode is 'time-averaged'. This specifies the length of the
time average. By default it is equal to frequency.

ref_date [optional] The reference date from which the frequency is based. The format is YYYYMMDD.
For example, a frequency of 1680000 (7 days) with a reference date of 20210101 means that the
time coordinate will be weeks since 2021-01-01. The default value is the simulation’s start date.

ref_time [optional] The reference time from which the frequency is based. The format is HHMMSS. The
default value is 000000. See ref_date.

fields Defines the list of fields that this collection should use. The format (per-field) is 'FieldName',
'GridCompName',. For example, 'SpeciesConc_O3', 'GCHPchem', specifies that this
collection should include the SpeciesConc_O3 field from the GCHPchem gridded component.

46 Chapter 9. Configuration files

GCHP, Release 14.2.0

Fields from multiple gridded components can be included in the same collection. However, a col-
lection must not mix fields that are defined at the center of vertical levels and the edges of vertical
levels (e.g., Met_PMID and Met_PEDGE cannot be included in the same collection).

Variables can be renamed in the output by adding 'your_custom_name', at the end. For
example, 'SpeciesConc_O3', 'GCHPchem', 'ozone_concentration', would re-
name the SpeciesConc_O3 field to “ozone_concentration” in the output file.

Output grid configuration

grid_label [optional] Defines the grid that this collection should be output on. The lable must match
on of the grid labels defined in <DEFINE GRID LABELS>. If grid_label isn’t set then the
collection uses the simulation’s horizontal grid.

conservative [optional] Defines whether or not regridding to the output grid should use ESMF’s first-
order conservative method. Valid values are 0 or 1. It is recommended you set this to 1 if you are
using grid_label. The default value is 0.

levels [optional] Defines the model levels that this collection should use (i.e., a subset of the simulation
levels). The format is a space-separated list of values. The lowest layer is 1 and the highest layer is
72. For example, 1 2 5 would select the first, second, and fifth level of the simulation.

track_file [optional] Defines the path to a 1D track file along which the collection is sampled. See Output
Along a Track for more info.

recycle_track [optional] Only valid if a track_file is defined. Specifies that the track file should be
reused every day. If .true. the dates in the track file are automatically forced to the simulation’s
current date. The default value is false.

Other configuration

end_date [optional] A date at which the collection is deactivated (turned off). By default there is no end
date.

end_time [optional] Time at which the collection is deactivated (turned off) on the end_date.

Example HISTORY.rc configuration

Below is an example HISTORY.rc that configures two output collection

1. 30-min instantaneous concentrations of O3, NO, NO2, and some meteorological parameters for the lowest 10
model levels on a 0.1°x0.1° covering the US. Each file contains one day of data.

2. 24-hour time averages of O3, NO, and NO2 concentrations, NO emissions, and some meteorological parameters.
The horizontal grid is the simulation’s grid. All vertical levels are use. Each file contains one week worth of
data, and files are generated relative to 2017-01-01.

EXPID: OutputDir/GCHP
EXPDSC: GEOS-Chem_devel
CoresPerNode: 6
VERSION: 1

GRID_LABELS: RegionalGrid_US
::

RegionalGrid_US.GRID_TYPE: LatLon
RegionalGrid_US.IM_WORLD: 640
RegionalGrid_US.JM_WORLD: 290
RegionalGrid_US.POLE: XY
RegionalGrid_US.DATELINE: XY
RegionalGrid_US.LON_RANGE: -127 -63

(continues on next page)

9.2. Additional resources 47

GCHP, Release 14.2.0

(continued from previous page)

RegionalGrid_US.LAT_RANGE: 23 52

COLLECTIONS: 'Inst30minGases',
'DailyAvgGasesAndNOEmissions',

::
Inst30minGases.template: '%y4%m2%d2_%h2%n2z.nc4',
Inst30minGases.format: 'CFIO',
Inst30minGases.frequency: 003000
Inst30minGases.duration: 240000
Inst30minGases.mode: 'instantaneous'
Inst30minGases.grid_label: RegionalGrid_US
Inst30minGases.levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Inst30minGases.fields: 'SpeciesConc_O3 ', 'GCHPchem',

'SpeciesConc_NO ', 'GCHPchem',
'SpeciesConc_NO2 ', 'GCHPchem',
'Met_BXHEIGHT ', 'GCHPchem',
'Met_AIRDEN ', 'GCHPchem',
'Met_AD ', 'GCHPchem',
'Met_PS1WET ', 'GCHPchem',

::
DailyAvgGasesAndNOEmissions.template: '%y4%m2%d2_%h2%n2z.nc4',
DailyAvgGasesAndNOEmissions.format: 'CFIO',
DailyAvgGasesAndNOEmissions.ref_date: 20170101
DailyAvgGasesAndNOEmissions.frequency: 240000
DailyAvgGasesAndNOEmissions.duration: 1680000
DailyAvgGasesAndNOEmissions.mode: 'time-averaged'
DailyAvgGasesAndNOEmissions.fields: 'SpeciesConc_O3 ', 'GCHPchem',

'SpeciesConc_NO ', 'GCHPchem',
'SpeciesConc_NO2 ', 'GCHPchem',
'EmisNO_Total ', 'GCHPchem',
'EmisNO_Aircraft ', 'GCHPchem',
'EmisNO_Anthro ', 'GCHPchem',
'EmisNO_BioBurn ', 'GCHPchem',
'EmisNO_Lightning', 'GCHPchem',
'EmisNO_Ship ', 'GCHPchem',
'EmisNO_Soil ', 'GCHPchem',
'EmisNO2_Anthro ', 'GCHPchem',
'EmisNO2_Ship ', 'GCHPchem',
'EmisO3_Ship ', 'GCHPchem',
'Met_BXHEIGHT ', 'GCHPchem',
'Met_AIRDEN ', 'GCHPchem',
'Met_AD ', 'GCHPchem',

::

9.2.10 HEMCO_Diagn.rc

Like in GEOS-Chem Classic, the HEMCO_Diagn.rc file is used to map between HEMCO containers and output file
diagnostic names. However, while all uncommented diagnostics listed in HEMCO_Diagn.rc are output as HEMCO
diagnostics in GEOS-Chem Classic, only the subset also listed in HISTORY.rc are output in GCHP. See the HEMCO
documentation for an overview of the file.

48 Chapter 9. Configuration files

CHAPTER

TEN

CONFIGURE A RUN

As noted earlier, the many configuration files in GCHP can be overwhelming but you should be able to accomplish
most if not all of what you wish to configure from one place in setCommonRunSettings.sh. Use this section to
learn what to change in the run directory based on what you would like to do.

Table of contents

• Configure a run

– Compute resources

* Set number of nodes and cores

* Change domain stack size

– Basic run settings

* Set cubed-sphere grid resolution

* Set stretched grid parameters

* Turn on/off model components

* Change model timesteps

* Set simulation start date and duration

– Inputs

* Change restart file

* Enable restart file to have missing species

* Turn on/off emissions inventories

* Change input meteorology

* Add new emissions files

– Outputs

* Output diagnostics data on a lat-lon grid

* Output restart files at regular frequency

* Turn on/off diagnostics

* Set diagnostic frequency, duration, and mode

* Add a new diagnostics collection

* Generate monthly mean diagnostics

49

GCHP, Release 14.2.0

* Prevent overwriting diagnostic files

Note: If there is topic not covered on this page that you would like to see added please create an issue on the GCHP
issues page with your request.

10.1 Compute resources

10.1.1 Set number of nodes and cores

To change the number of nodes and cores for your run you must update settings in two places: (1)
setCommonRunSettings.sh, and (2) your run script. The setCommonRunSettings.sh file contains de-
tailed instructions on how to set resource parameter options and what they mean. Look for the Compute Re-
sources section in the script. Update your resource request in your run script to match the resources set in
setCommonRunSettings.sh.

It is important to be smart about your resource allocation. To do this it is useful to understand how GCHP works with
respect to distribution of nodes and cores across the grid. At least one unique core is assigned to each face on the
cubed sphere, resulting in a constraint of at least six cores to run GCHP. The same number of cores must be assigned
to each face, resulting in another constraint of total number of cores being a multiple of six. Communication between
the cores occurs only during transport processes.

While any number of cores is valid as long as it is a multiple of six (although there is an upper limit per resolution),
you will typically start to see negative effects due to excessive communication if a core is handling less than around
one hundred grid cells or a cluster of grid cells that are not approximately square. You can determine how many grid
cells are handled per core by analyzing your grid resolution and resource allocation. For example, if running at C24
with six cores each face is handled by one core (6 faces / 6 cores) and contains 576 cells (24x24). Each core therefore
processes 576 cells. Since each core handles one face, each core communicates with four other cores (four surrounding
faces). Maximizing squareness of grid cells per core is done automatically within setCommonRunSettings.sh
if variable AutoUpdate_NXNY is set to ON in the “DOMAIN DECOMPOSITON” section of the file.

10.1.2 Change domain stack size

For runs at very high resolution or small number of processors you may run into a domains stack size error. This is
caused by exceeding the domains stack size memory limit set at run-time. The error will be apparent from the message
in your log file. If this occurs you can increase the domains stack size in file input.nml.

10.2 Basic run settings

10.2.1 Set cubed-sphere grid resolution

GCHP uses a cubed sphere grid rather than the traditional lat-lon grid used in GEOS-Chem Classic. While regular
lat-lon grids are typically designated as Lat Lon (e.g. 45), cubed sphere grids are designated by the side-length of
the cube. In GCHP we specify this as CX (e.g. C24 or C180). The simple rule of thumb for determining the roughly
equivalent lat-lon resolution for a given cubed sphere resolution is to divide the side length by 90. Using this rule you
can quickly match C24 with about 4x5, C90 with 1 degree, C360 with quarter degree, and so on.

50 Chapter 10. Configure a run

https://github.com/geoschem/GCHP/issues
https://github.com/geoschem/GCHP/issues

GCHP, Release 14.2.0

To change your grid resolution in the run directory edit CS_RES in the “GRID RESOLUTION” section of
setCommonRunSettings.sh. The paramter should be an integer value of the cube side length you wish to
use. To use a uniform global grid resolution make sure STRETCH_GRID is set to OFF in the “STRETCHED GRID”
section of the file. To use a stretched grid rather than a globally uniform grid see the section on this page for setting
stretched grid parameters.

10.2.2 Set stretched grid parameters

GCHP has the capability to run with a stretched grid, meaning one portion of the globe is stretched to fine resolution.
Set stretched grid parameter in setCommonRunSettings.sh section “STRETCHED GRID”. See instructions in
that section of the file. For more detailed information see the stretched grid section of the Supplemental Guides section
of the GCHP ReadTheDocs.

10.2.3 Turn on/off model components

You can toggle most primary GEOS-Chem components that are set in geoschem_config.yml from the
“GEOS-CHEM COMPONENTS” section of setCommonRunSettings.sh. The settings in that file will update
geoschem_config.yml automatically so be sure to check that the settings there are as you intend. For emissions
you should directly edit HEMCO_Config.rc.

10.2.4 Change model timesteps

Model timesteps, including chemistry, dynamic, and RRTMG, are configured within the “TIMESTEPS” section of
setCommonRunSettings.sh. By default, the RRTMG timestep is set to 3 hours. All other GCHP timesteps
are automatically set based on grid resolution. Chemistry and dynamic timesteps are 20 and 10 minutes respectively
for grid resolutions coarser than C180, and 10 and 5 minutes for C180 and higher. Meteorology read frequency for
PS2, SPHU2, and TMPU2 are automatically updated in ExtData.rc accordingly. To change the default timesteps
settings edit the “TIMESTEPS” section of setCommonRunSettings.sh.

10.2.5 Set simulation start date and duration

Unlike GEOS-Chem Classic, GCHP uses a start date and run duration rather than start and end dates. Set simulation
start date in cap_restart using string format YYYYMMDD HHmmSS. Set simulation duration in section “SIM-
ULATION DURATION” in setCommonRunSettings.sh using the same format as start date. For example, a
1-year run starting 15 January 2019 would have 20190115 000000 in cap_restart and 00010000 000000
in setCommonRunSettings.sh.

Under the hood cap_restart is used directly by the MAPL software in GCHP, and setCommonRunSettings.
sh auto-updates the run duration in GCHP config file CAP.rc. Please be aware that MAPL overwrites
cap_restart at the end of the simulation to contain the new start date (end of last run) so be sure to check it
every time you run GCHP.

If you poke around the GCHP configuration files you may notice that file CAP.rc contains entries for BEG_DATE
and END_DATE. You can ignore these fields for most cases. BEG_DATE is not used for start date if cap_restart
is present. However, it must be prior to your start date for use in GEOS-Chem’s “ELAPSED_TIME” variable. We set
it to year 1960 to be safe. BEG_DATE can also be ignored as long as it is the same as or later than your start date plus
run duration. For safety we set it to year 2200. The only time you would need to adjust these settings is for simulations
way in the past or way into the future.

10.2. Basic run settings 51

GCHP, Release 14.2.0

10.3 Inputs

10.3.1 Change restart file

All GCHP run directories come with symbolic links to initial restart files for commonly used cubed sphere resolutions.
These are located in the Restarts directory in the run directory. All initial restart files contain start date and grid
resolution in the filename using the start date in cap_restart. Prior to running GCHP, either you or your run script
will execute setRestartLink.sh to create a symbolic link gchp_restart.nc4 to point to the appropriate
restart file given configured start date and grid resolution. gchp_restart.nc4 will always be used as the restart
file for all runs since it is specified as the restart file in GCHP.rc.

If you want to change the restart file then you should put the restart file you want to use in the Restarts directory us-
ing the expected filename format with the start date you configure in cap_restart and the grid resolution you con-
figure in setCommonRunSettings.sh. The expected format is GEOSChem.Restarts.YYYYMMDD_HHmmz.
cN.nc4. Running setRestartLink.sh will update gchp_restart.nc4 to use it.

If you do not want to rename your restart file then you can create a symbolic link in the Restarts folder that points
to it.

Please note that unlike GC-Classic, GCHP does not use a separate HEMCO restart file. All HEMCO restart variables
are included in the main GCHP restart.

10.3.2 Enable restart file to have missing species

Most simulations by default do not allow missing species in the restart file. The model will exit with an error if species
are not found. However, there is a switch in setCommonRunSetting.sh to disable this behavior. This toggle is
located in the section on infrequently changed settings under the header REQUIRE ALL SPECIES IN INITIAL
RESTART FILE. Setting the switch to NO will use background values set in species_database.yml as initial
values for species that are missing.

10.3.3 Turn on/off emissions inventories

Because file I/O impacts GCHP performance it is a good idea to turn off file read of emissions that you do not need.
You can turn individual emissions inventories on or off the same way you would in GEOS-Chem Classic, by setting
the inventories to true or false at the top of configuration file HEMCO_Config.rc. All emissions that are turned off
in this way will be ignored when GCHP uses ExtData.rc to read files, thereby speeding up the model.

For emissions that do not have an on/off toggle at the top of the file, you can prevent GCHP from reading them by
commenting them out in HEMCO_Config.rc. No updates to ExtData.rcwould be necessary. If you alternatively
comment out the emissions in ExtData.rc but not HEMCO_Config.rc then GCHP will fail with an error when
looking for the file information.

Another option to skip file read for certain files is to replace the file path in ExtData.rc with /dev/null. How-
ever, if you want to turn these inputs back on at a later time you should preserve the original path by commenting out
the original line.

52 Chapter 10. Configure a run

GCHP, Release 14.2.0

10.3.4 Change input meteorology

Input meteorology source and grid resolution are set in config file ExtData.rc during run directory creation. You
will be prompted to choose between MERRA2 and GEOS-FP, and grid resolution is automatically set to the native grid
lat-lon resolution. If you would like to change the meteorology inputs, for example using a different grid resolution,
then you would need to change the met-field entries in run directory file ExtData.rc after creating a run directory.
Simply open the file, search for the meteorology section, and edit file paths as needed. Please note that while MAPL
will automatically regrid met-fields to the run resolution you specify in setCommonRunSettings.sh, you will
achieve best performance using native resolution inputs.

10.3.5 Add new emissions files

There are two steps for adding new emissions inventories to GCHP. They are (1) add the inventory information to
HEMCO_Config.rc, and (2) add the inventory information to ExtData.rc.

To add inventory information to HEMCO_Config.rc, follow the same rules as you would for adding a new emission
inventory to GEOS-Chem Classic. Note that not all information in HEMCO_Config.rc is used by GCHP. This is
because HEMCO is only used by GCHP to handle emissions after they are read, e.g. scaling and applying hierarchy.
All functions related to HEMCO file read are skipped. This means that you could put garbage for the file path and units
in HEMCO_Config.rc without running into problems with GCHP, as long as the syntax is what HEMCO expects.
However, we recommend that you fill in HEMCO_Config.rc in the same way you would for GEOS-Chem Classic
for consistency and also to avoid potential format check errors.

To add inventory information to ExtData.rc follow the guidelines listed at the top of the file and use existing
inventories as examples. Make sure that you stay consistent with the information you put into HEMCO_Config.rc.
You can ignore all entries in HEMCO_Config.rc that are copies of another entry (i.e. mostly filled with dashes).
Putting these in ExtData.rc would result in reading the same variable in the same file twice.

A few common errors encountered when adding new input emissions files to GCHP are:

1. Your input file contains integer values. Beware that the MAPL I/O component in GCHP does not read or write
integers. If your data contains integers then you should reprocess the file to contain floating point values instead.

2. Your data latitude and longitude dimensions are in the wrong order. Lat must always come before lon in your
inputs arrays, a requirement true for both GCHP and GEOS-Chem Classic.

3. Your 3D input data are mapped to the wrong levels in GEOS-Chem (silent error). If you read in 3D data
and assign the resulting import to a GEOS-Chem state variable such as State_Chm or State_Met, then
you must flip the vertical axis during the assignment. See files Includes_Before_Run.H and setting
State_Chm%Species in Chem_GridCompMod.F90 for examples.

4. You have a typo in either HEMCO_Config.rc or ExtData.rc. Errors in HEMCO_Config.rc typically
result in the model crashing right away. Errors in ExtData.rc typically result in a problem later on during
ExtData read. Always try a short run with all debug prints enabled when first implementing new emissions. See
the debugging section of the user manual for more information. Another useful strategy is to find config file
entries for similar input files and compare them against the entry for your new file. Directly comparing the file
metadata may also lead to insights into the problem.

10.3. Inputs 53

GCHP, Release 14.2.0

10.4 Outputs

10.4.1 Output diagnostics data on a lat-lon grid

See documentation in the HISTORY.rc config file for instructions on how to output diagnostic collection on lat-lon
grids, as well as the configuration files section at the top of this page for more information on that file. If outputting on
a lat-lon grid you may also output regional data instead of global. Make sure that whatever grid you choose is listed
under GRID_LABELS and is not commented out in HISTORY.rc.

10.4.2 Output restart files at regular frequency

The MAPL component in GCHP has the option to output restart files (also called checkpoint files) prior
to run end. These periodic restart files are output to the main level of the run directory with filename
gcchem_internal_checkpoint.YYYYMMDD_HHssz.nc4.

Outputting restart files beyond the end of the run is a good idea if you plan on doing a long simulation and you are
not splitting your run into multiple jobs. If the run crashes unexpectedly then you can restart mid-run rather than start
over from the beginning. Update settings for checkpoint restart outputs in setCommonRunSettings.sh section
“MID-RUN CHECKPOINT FILES”. Instructions for configuring restart frequency are included in the file.

10.4.3 Turn on/off diagnostics

To turn diagnostic collections on or off, comment (“#”) collection names in the “COLLECTIONS” list at the top of
file HISTORY.rc. Collections cannot be turned on/off from setCommonRunSettings.sh.

10.4.4 Set diagnostic frequency, duration, and mode

All diagnostic collections that come with the run directory have frequency and duration auto-set within
setCommonRunSettings.sh. The file contains a list of time-averaged collections and instantaneous collections,
and allows setting a frequency and duration to apply to all collections listed for each. Time-avraged collections also
have a monthly mean option (see separate section on this page about monthly mean). To avoid auto-update of a certain
collection, remove it from the list in setCommonRunSettings.sh, or set “AutUpdate_Diagnostics” to OFF. See
section “DIAGNOSTICS” within setCommonRunSettings.sh for examples.

10.4.5 Add a new diagnostics collection

Adding a new diagnostics collection in GCHP is the same as for GEOS-Chem Classic netcdf diagnostics. You must
add your collection to the collection list in HISTORY.rc and then define it further down in the file. Any 2D or 3D
arrays that are stored within GEOS-Chem objects State_Met, State_Chm, or State_Diag, may be included as
fields in a collection. State_Met variables must be preceded by “Met_”, State_Chm variables must be preceded
by “Chem_”, and State_Diag variables should not have a prefix. Collections may have a combination of 2D and
3D variables, but all 3D variables must have the same number of levels. See the HISTORY.rc file for examples.

54 Chapter 10. Configure a run

GCHP, Release 14.2.0

10.4.6 Generate monthly mean diagnostics

You can toggle monthly mean diagnostics on/off from within setCommonRunSettings.sh in the “DIAGNOS-
TICS” section if you also set auto-update of diagnostics it that file to on. All time-averaged diagnostic collections will
then automatically be configured to compute monthly mean. Alternatively, you can edit HISTORY.rc directly and
set the “monthly” field to value 1 for each collection you wish to output monthly diagnostics for.

10.4.7 Prevent overwriting diagnostic files

By default all GCHP run directories are configured to allow overwriting diagnostics files present in OutputDir
over the course a simulation. You may disable this feature by setting Allow_Overwrite=.false. at the top of
configuration file HISTORY.rc.

10.4. Outputs 55

GCHP, Release 14.2.0

56 Chapter 10. Configure a run

CHAPTER

ELEVEN

OUTPUT FILES

A successful GCHP run produces three categories of output files: diagnostics, restarts (also called checkpoints), and
logs. Diagnostic and restart files are always in netCDF4 format, and logs are always ascii viewable with any text editor.
Diagnostic files are output to the OutputDir directory in the run directory. The end-of-run restart file is output to
the Restarts directory. All other output files, including periodic checkpoints if enabled, are saved to the main level
of the run directory.

Note: It is important to be aware that GCHP 3D data files in this version of GCHP have two different vertical
dimension conventions. Restart files and Emissions diagnostic files are defined with top-of-atmospheric level equal to
1. All other data files, meaning all diagnostic files that are not Emissions collections, are defined with surface level
equal to 1. This means files may be vertically flipped relative to each other. This should be taken into account when
doing data visualization and analysis using these files.

11.1 File descriptions

Below is a summary of all GCHP output files that you may encounter depending on your run directory configuration.

gchp.YYYYMMSS_HHmmSSz.log
Standard output log file of GCHP, including both GEOS-Chem and HEMCO. The date in the filename is the start
date of the simulation. Using this file is technically optional since it appears only in the run script. However,
the advantage of sending GCHP standard output to this file is that the logs of consecutive runs will not be
over-written due to the date in the filename. Note that the file contains HEMCO log information as well as
GEOS-Chem. Unlike in GEOS-Chem Classic there is no HEMCO.log in GCHP.

batch job file, e.g. slurm-jobid.out
If you use a job scheduler to submit GCHP as a batch job then you will have a job log file. This file will contain
output from your job script unless sent to a different file. If your run crashes then the MPI error messages and
error traceback will also appear in this file.

allPES.log
GCHP logging output based on configuration in logging.yml. Treat this file as a debugging tool to help
diagnose problems in MAPL, particularly the ExtData component of the model which handles input reading
and regridding.

logfile.000000.out
Log file for advection. It includes information such as the domain stack size, stretched grid factors, and FV3
parameters used in the run.

cap_restart
This file is both input and output. As an input file it contains the simulation start date. After a successful run the

57

GCHP, Release 14.2.0

content of the file is updated to the simulation end date. As an output file it is therefore the input file for the next
run if running GCHP simulations consecutively in time.

Restarts/GEOSChem.Restart.YYYYMMDD_HHmmz.cN.nc4
GCHP restart file output at the end of the run. This file is actually the GCHP end-of-run checkpoint file that is
moved and renamed as part of the run script. Unless including the code to do that in your run script you will
instead get gcchem_internal_checkpoint in the main run directory. Moving and renaming is a better
option because (1) it includes the datetime to prevent overwriting upon consecutive runs, (2) it enables using
the gchp_restart.nc4 symbolic link in the main run directory to automatically point to the correct restart
file based on start date and grid resolution, and (3) it minimizes clutter in the run directory. Please note that the
vertical level dimension in all GCHP restart files is positive down, meaning level 1 is top-of-atmosphere.

gcchem_internal_checkpoint.YYYYMMDD_HHmmz.nc4
Optional restart files output mid-run. In order to generate these you must configure the run directory to output
with a specific frequency that is less than the duration of your run. Note that unlike the end-of-run restart file,
these files are not copied to Restarts in your run script and are not renamed.

OutputDir/GEOSChem.HistoryCollectionName.YYYYMMDD_HHmmz.nc4
GCHP diagnostic data files. Each file contains the collection name configured in HISTORY.rc and the datetime
of the first data in the file. For time-averaged data files the datetime is the start of the averaging period. Please
note that the vertical level dimension in GCHP diagnostics files is collection-dependent. Data are positive
down, meaning level 1 is top-of-atmosphere, for the Emissions collection. All other collections are positive up,
meaning level 1 is surface.

HistoryCollectionName.rcx
Summary of settings in HISTORY.rc per collection.

EGRESS
This file is empty and can be ignored. It is an artifact of the MAPL software used in GCHP.

warnings_and_errors.log
This file is empty and can be ignored. It is an artifact of configuration in logging.yml.

11.2 Memory

Memory statistics are printed to the GCHP log each model timestep. As discussed in the run directory configuration
section of this user guide, this includes percentage of memory committed, percentage of memory used, total used
memory (MB), and total swap memory (MB) by default.

To inspect the memory usage of GCHP you can grep the output log file for string Date: and Mem/Swap. For
example, grep "Date:|Mem/Swap" gchp.log. The end of the line containing date and time shows memory
committed and used. For example, 42.8% : 40.4% Mem Comm:Used indicates 42.8% of memory available is
committed and 40.4% of memory is actually used. The total memory used is in the next line, for example Mem/Swap
Used (MB) at MAPL_Cap:TimeLoop= 1.104E+05 0.000E+00. The first value is the total memory used
in MB, and the second line is swap (virtual) memory used. In this example GCHP is using around 110 gigabytes of
memory with zero swap.

These memory statistics are useful for assessing how much memory GCHP is using and whether the memory usage
grows over time. If the memory usage goes up throughout a run then it is an indication of a memory leak in the model.
The memory debugging option is useful for isolating the memory leak by determining if there if it is in GEOS-Chem
or advection.

58 Chapter 11. Output Files

GCHP, Release 14.2.0

11.3 Timing

Timing of GCHP components is done using MAPL timers. A summary of all timing is printed to the GCHP log at
the end of a run. Configuring timers from the run directory is not currently possible but will be an option in a future
version. Until then a complete summary of timing will always be printed to the end of the log for a successful GCHP
run. You can use this information to help diagnose timing issues in the model, such as extra slow file read due to
system problems.

The timing output written by MAPL is somewhat cryptic but you can use this guide to decipher it. Timing is broken
in up into several sections.

1. GCHPctmEnv, the environment component that facilitates exchange between GEOS-Chem and FV3 advection

2. GCHPchem, the GEOS-Chem component containing chemistry, mixing, convection, emissions and deposition

3. DYNAMICS, the FV3 advection component

4. GCHP, the parent component of GCHPctmEnv, GCHPchem, and DYNAMICS, and sibling component to HIST
and EXTDATA

5. HIST, the MAPL History component for writing diagnostics

6. EXTDATA, the MAPL ExtData component for processing inputs, including reading and regridding

7. Total model and MPI communicator run times broken into user, system, and total times

8. Full summary of all major model components, including core routines SetService, Initialize, Run, and Finalize

9. Model throughput in units of days per day

Each of the six gridded component sections contains two sub-sections. The first subsection shows timing statistics
for core gridded component processes and their child functions. These statistics include number of execution cycles
as well as inclusive and exclusive total time and percent time. Inclusive refers to the time spent in that function
including called child functions. Exclusive refers to the time spent in that function excluding called child functions.

The second subsection shows from left to right minimum, mean, and maximum processor times for the gridded com-
ponent and its MAPL timers. If you are interested in timing for a specific part of GEOS-Chem then use the timers in
this section for GCHPchem, specifically the ones that start with prefix GC_. For chemistry you should look at timer
GC_CHEM which includes the calls to compute overhead ozone, set H2O, and calling the chemistry driver routine.

Beware that the timers can be difficult to interpret because the component times do not always add up to the total run
time. This is likely due to load imbalance where processors wait (timed in MAPL) while other processors complete
(timed in other processes). You can get a sense of how large the wait time is by comparing the Exclusive time to
the Inclusive time. If the former is smaller than the latter then the bulk of time is spent in a sub-process and the
Exclusive time may be at least partially due to wait time.

If you are interested in changing the definitions of GCHP timers, or adding a new one, you will need to edit the source
code. Toggling GC_ timers on and off are mostly in file geos-chem/Interfaces/GCHP/gchp_chunk_mod.
F90, but also in geos-chem/Interfaces/GCHP/Chem_GridCompMod.F90, using MAPL subroutines
MAPL_TimerOn and MAPL_TimerOff. When in doubt about what a timer is measuring it is best to check the
source code to see what calls it is wrapping.

11.3. Timing 59

GCHP, Release 14.2.0

60 Chapter 11. Output Files

CHAPTER

TWELVE

PLOT OUTPUT DATA

With the exception of the restart file, all GCHP output netCDF files may be viewed with Panoply software freely
available from NASA GISS. In addition, python works very well with all GCHP output.

12.1 Panoply

Panoply is useful for quick and easy viewing of GCHP output. Panoply is a grahpical program for plotting geo-
referenced data like GCHP’s output. It is an intuitive program and it is easy to set up.

You can read more about Panoply, including how to install it, here.

61

https://www.giss.nasa.gov/tools/panoply/

GCHP, Release 14.2.0

Some suggestions

• If you can mount your cluster’s filesystem as a Network File System (NFS) on your local machine, you
can install Panoply on your local machine and view your GCHP data through the NFS.

• If your cluster supports a graphical interface, you could install Panoply (administrative priviledges not
necessary, provided Java is installed) yourself.

• Alternatively, you could install Panoply on your local machine and use scp or similar to transfer files back
and forth when you want to view them.

Note: To get rid of the missing value bands along face edges, uncheck ‘Interpolate’ (turn interpolation off) in the
Array(s) tab.

12.2 Python

To make a basic plot of GCHP data using Python you will need the following libraries:

• cartopy >= 0.19 (0.18 won’t work – see cartopy#1622)

• xarray

• netcdf4

If you use conda you can install these packages like so

$ conda activate your-environment-name
$ conda install cartopy>=0.19 xarray netcdf4 -c conda-forge

Here is a basic example of plotting cubed-sphere data:

• Sample data: GCHP.SpeciesConc.20210508_0000z.nc4

import matplotlib.pyplot as plt
import cartopy.crs as ccrs # cartopy must be >=0.19
import xarray as xr

ds = xr.open_dataset('GCHP.SpeciesConc.20210508_0000z.nc4') # see note below for
→˓download instructions

plt.figure()
ax = plt.axes(projection=ccrs.EqualEarth())
ax.coastlines()
ax.set_global()

norm = plt.Normalize(1e-8, 7e-8)

for face in range(6):
x = ds.corner_lons.isel(nf=face)
y = ds.corner_lats.isel(nf=face)
v = ds.SpeciesConc_O3.isel(time=0, lev=23, nf=face)
ax.pcolormesh(x, y, v, norm=norm, transform=ccrs.PlateCarree())

plt.show()

62 Chapter 12. Plot Output Data

https://github.com/SciTools/cartopy/pull/1622
https://docs.conda.io/en/latest/

GCHP, Release 14.2.0

Note: The grid-box corners should be used with pcolormesh() because the grid-boxes are not regular (it’s a
curvilinear grid). This is why we use corner_lats and corner_lons in the example above.

You may also use the GCPy python toolkit to work with GCHP files. For more information see https://github.com/
geoschem/gcpy/.

12.2. Python 63

https://github.com/geoschem/gcpy/
https://github.com/geoschem/gcpy/

GCHP, Release 14.2.0

64 Chapter 12. Plot Output Data

CHAPTER

THIRTEEN

DEBUGGING

This page provides strategies for investigating errors encountered while using GCHP.

Table of contents

• Debugging

– Configure errors

– Build-time errors

– Run-time errors

* Recompile with debug flags

* Enable maximum print output

* Inspecting memory

13.1 Configure errors

Coming soon

13.2 Build-time errors

Coming soon

65

GCHP, Release 14.2.0

13.3 Run-time errors

13.3.1 Recompile with debug flags

Recompile using debug flags by setting -DCMAKE_BUILD_TYPE=Debug during the configure step. See the section
of the user guide on compiling GCHP for more guidance on how to do this. Once you rebuild there may be more
information in the logs when you run again.

13.3.2 Enable maximum print output

Besides compiling with CMAKE_BUILD_TYPE=Debug, there are a few run-time settings you can configure to boost
your chance of successful debugging. All of them involve sending additional print statements to the log files.

1. Set Turn on debug printout? in geoschem_config.yml to T to turn on extra GEOS-Chem print statements
in the main log file.

2. Set the Verbose and Warnings settings in HEMCO_Config.rc to maximum values of 3 to send the maximum
number of prints to HEMCO.log.

3. Set CAP.EXTDATA and MAPL options root_level in logging.yml to DEBUG to send root thread MAPL
prints to allPEs.log.

4. Set CAP.EXTDATA and MAPL option level in logging.yml to DEBUG to send all thread MAPL ExtData
(input) prints to allPEs.log.

None of these options require recompiling. Be aware that all of them will slow down your simulation. Be sure to set
them back to the default values after you are finished debugging.

13.3.3 Inspecting memory

Memory statistics are printed to the GCHP log each model timestep by default. This includes percentage of memory
committed, percentage of memory used, total used memory (MB), and total swap memory (MB). This information
is always printed and is not configurable from the run directory. However, additional memory prints may be enabled
by changing the value set for variable MEMORY_DEBUG_LEVEL in run directory file GCHP.rc. Setting this to a
value greater than zero will print out total used memory and swap memory before and after run methods for gridded
components GCHPctmEnv, FV3 advection, and GEOS-Chem. Within GEOS-Chem, total and swap memory will
also be printed before and after subroutines to run GEOS-Chem, perform chemistry, and apply emissions. For more
information about inspecting memory see the output files section of this user guide.

66 Chapter 13. Debugging

CHAPTER

FOURTEEN

LOAD SOFTWARE INTO YOUR ENVIRONMENT

This supplemental guide describes the how to load the required software dependencies for GEOS-Chem and HEMCO
into your computational environment.

14.1 On the Amazon Web Services Cloud

All of the required software dependencies for GEOS-Chem and HEMCO will be included in the Amazon Machine
Image (AMI) that you use to initialize your Amazon Elastic Cloud Compute (EC2) instance. For more information,
please see our our GEOS-Chem cloud computing tutorial.

14.2 On a shared computer cluster

If you plan to use GEOS-Chem or HEMCO on a shared computational cluster (e.g. at a university or research in-
stitution), then there is a good chance that your IT staff will have already installed several of the required software
dependencis.

Depending on your system’s setup, there are a few different ways in which you can activate these software pacakges
in your computational environment, as shown below.

14.2.1 1. Check if libraries are available as modules

Many high-performance computing (HPC) clusters use a module manager such as Lmod or environment-modules to
load software packages and libraries. A module manager allows you to load different compilers and libraries with
simple commands.

One downside of using a module manager is that you are locked into using only those compiler and software versions
that have already been installed on your system by your sysadmin or IT support staff. But in general, module managers
succeed in ensuring that only well-tested compiler/software combinations are made available to users.

Tip: Ask your sysadmin or IT support staff for the software loading instructions specific to your system.

67

http://geos-chem-cloud.readthedocs.io
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/

GCHP, Release 14.2.0

1a. Module load example

The commands shown below are specific to the Harvard Cannon cluster, but serve to demonstrate the process. Note that
the names of software packages being loaded may contain version numbers and/or ID strings that serve to differentiate
one build from another.

$ module purge
$ module load git/2.17.0-fasrc01
$ module load gcc/10.2.0-fasrc01
$ module load openmpi/4.1.0-fasrc01
$ module load netcdf-fortran/4.5.3-fasrc03
$ module load flex/2.6.4-fasrc01
$ module load cmake/3.17.3-fasrc01

Note that it is often not necessary to load all modules. For example, loading netcdf-fortran will also cause its
dependencies (such as netcdf-c, hdf5, etc.) to also be loaded into your environment.

Here is a summary of what the above commands do:

module purge
Removes all previously loaded modules

module load git/...
Loads Git (version control system)

module load gcc/...
Loads the GNU Compiler Collection (suite of C, C++, and Fortran compilers)

module load openmpi/...
Loads the OpenMPI library (a dependency of netCDF)

module load netcdf/..
Loads the netCDF library

Important: Depending on how the netCDF libraries have been installed on your system, you might also need
to load the netCDF-Fortran library separately, e.g.:

module load netcdf-fortran/...

module load perl/...
Loads Perl (scripting language)

module load cmake/...
Loads Cmake (needed to compile GEOS-Chem)

14.2.2 2. Check if Spack-built libraries are available

If your system doesn’t have a module manager installed, check to see if the required libraries for GEOS-Chem and
HEMCO were built with the Spack package manager. Type

$ spack find

to locate any Spack-built software libraries on your system. If there Spack-built libraries are found, you may present,
you may load them into your computational environment with spack load commands such as:

68 Chapter 14. Load software into your environment

GCHP, Release 14.2.0

$ spack load gcc@10.2.0
$ spack load netcdf-c%gcc@10.2.0
$ spack load netcdf-fortran%gcc@10.2.0
... etc ...

When loading a Spack-built library, you can specify its version number. For example, spack load gcc@10.2.0
tells Spack to load the GNU Compiler Collection version 10.2.0.

You may also specify a library by the compiler it was built with. For example, spack load
netcdf-fortran%gcc@10.2.0 tells Spack to load the version of netCDF-Fortran that was built with GNU
Compiler Collection version 10.2.0.

These specification methods are often necessary to select a given library in case there are several available builds to
choose from.

We recommend that you place spack load commands into an environment file.

If a Spack environment has been installed on your system, type:

spack env activate -p ENVIRONMENT-NAME

to load all of the libraries in the environment together.

To deactivate the environment, type:

spack deactivate

14.2.3 3. Check if libaries have been manually installed

If your computer system does not use a module manager and does not use Spack, check for a manual library in-
stallation. Very often, common software libraries are installed into standard locations (such as the /usr/lib or
/usr/local/lib system folders). Ask your sysadmin for more information.

Once you know the location of the compiler and netCDF libraries, you can set the proper environment variables for
GEOS-Chem and HEMCO.

14.2.4 4. If there are none of these, install them with Spack

If your system has none of the required software packages that GEOS-Chem and HEMCO need, then we recommend
that you use Spack to build the libraries yourself . Spack makes the process easy and will make sure that all software
dependences are resolved.

Once you have installed the libraries with Spack, you can load the libraries into your computational environment as
described above.

14.2. On a shared computer cluster 69

https://geos-chem.readthedocs.io/getting-started/login-env-files.html
https://spack-tutorial.readthedocs.io/en/latest/tutorial_environments.html

GCHP, Release 14.2.0

70 Chapter 14. Load software into your environment

CHAPTER

FIFTEEN

BUILD REQUIRED SOFTWARE WITH SPACK

This page has instructions for building dependencies for GEOS-Chem Classic, GCHP, and HEMCO These are the
software libraries that are needed to compile and execute these programs.

Before proceeding, please also check if the dependencies for GEOS-Chem, GCHP, and HEMCO are already found on
your computational cluster or cloud environment. If this is the case, you may use the pre-installed versions of these
software libraries and won’t have to install your own versions.

For more information about software dependencies, see:

• GEOS-Chem Classic software requirements

• GCHP software requirements

• HEMCO software requirements

15.1 Introduction

In the sections below, we will show you how to build a single software environment containing all software de-
pendencies for GEOS-Chem Classic, GCHP, and HEMCO. This will be especially of use for those users working
on a computational cluster where these dependencies have not yet been installed.

We will be using the Spack package manager to download and build all required software dependencies for GEOS-
Chem Classic, GCHP and HEMCO.

Note: Spack is not the only way to build the dependencies. It is possible to download and compile the source code
for each library manually. Spack automates this process, thus it is the recommended method.

You will be using this workflow:

1. Install Spack and do first-time setup

2. Clone a copy of GCClassic, GCHP, or HEMCO

3. Install the recommended compiler

4. Build GEOS-Chem dependencies and useful tools

5. Add spack load commands to your environment file

6. Clean up

71

https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io
https://geos-chem.readthedocs.io/en/stable/gcc-guide/01-startup/system-req-soft.html
https://gchp.readthedocs.io/en/stable/getting-started/requirements.html#software-requirements
https://hemco.readthedocs.io/en/stable/hco-sa-guide/software.html
https://spack.readthedocs.io

GCHP, Release 14.2.0

15.2 Install Spack and do first-time setup

Decide where you want to install Spack (aka the Spack root directory). A few details you should consider are:

• The Spack root directory will be ~5-10 GB. Keep in mind that some computational clusters restrict the size of
your home directory (aka ${HOME}) to a few GB).

• This Spack root directory cannot be moved. Instead, you will have to reinstall Spack to a different directory
location (and rebuild all software packages).

• The Spack root directory should be placed in a shared drive if several users need to access it.

Once you have chosen an location for the Spack root directory, you may continue with the Spack download and setup
process.

Important: Execute all commands in this tutorial from the same directory. This is typically one directory level higher
than the Spack root directory.

For example, if you install Spack as a subdirectory of ${HOME}, then you will issue all commands from ${HOME}.

Use the commands listed below to install Spack and perform first-time setup. You can copy-paste these commands,
but lookout for lines marked with a # (modifiable) ... comment as they might require modification.

$ cd ${HOME} # (modifiable) cd to the install location
→˓you chose

$ git clone -c feature.manyFiles=true https://github.com/spack/spack.git # download
→˓Spack

$ source spack/share/spack/setup-env.sh # Load Spack

$ spack external find # Tell Spack to look for existing software

$ spack compiler find # Tell Spack to look for existing complilers

Note: If you should encounter this error:

$ spack external find
==> Error: 'name'

then Spack could not find any external software on your system.

Spack searches for executables that are located within your search path (i.e. the list of directories contained in your
$PATH environment variable), but not within software modules. Because of this, you might have to load a software
package into your environment before Spack can detect it. Ask your sysadmin or IT staff for more information about
your system’s specific setup.

After the first-time setup has been completed, an environment variable named SPACK_ROOT, will be created in your
Unix/Linux environment. This contains to the absolute path of the Spack root directory. Use this command to view
the value of SPACK_ROOT:

$ echo ${SPACK_ROOT}
/path/to/home/spack # Path to Spack root, assumes installation to a subdir of $
→˓{HOME}

72 Chapter 15. Build required software with Spack

GCHP, Release 14.2.0

15.3 Clone a copy of GCClassic, GCHP, or HEMCO

The GCClassic, GCHP , and HEMCO repositories each contain a spack/ subdirectory with customized Spack con-
figuration files modules.yaml and packages.yaml. We have updated these YAML files with the proper settings
in order to ensure a smooth software build process with Spack.

First, define the model, scope_dir, and scope_args environment variables as shown below.

$ model=GCClassic # Use this if you will be working with GEOS-Chem
→˓Classic
$ model=GCHP # Use this if you will be working with GCHP
$ model=HEMCO # Use this if you will be working with HEMCO
→˓standalone

$ scope_dir="${model}/spack" # Folder where customized YAML files are stored

$ scope_args="-C ${scope_dir}" # Tell spack to for custom YAML files in scope_dir

You will use these environment variables in the steps below.

When you have completed this step, download the source code for your preferred model (e.g. GEOS-Chem Classic,
GCHP, or HEMCO standalone):

$ git clone --recurse-submodules https://github.com/geoschem/${model}.git

15.4 Install the recommended compiler

Next, install the recommended compiler, gcc (aka the GNU Compiler Collection). Use the scope_args environ-
ment variable that you defined in the previous step.

$ spack ${scope_args} install gcc # Install GNU Compiler Collection

Note: Requested version numbers for software packages (including the compiler) are listed in the ${scope_dir}/
packages.yaml file. We have selected software package versions that have been proven to work together. You
should not have to change any of the settings in ${scope_dir}/packages.yaml.

As of this writing, the default compiler is gcc 10.2.0 (includes C, C++, and Fortran compilers). We will upgrade to
newer compiler and software package versions as necessary.

The compiler installation should take several minutes (or longer if you have a slow internet connection).

Register the compiler with Spack after it has been installed. This will allow Spack to use this compiler to build other
software packages. Use this command:

$ spack compiler add $(spack location -i gcc) # Register GNU Compiler Collection

You will then see output similar to this:

==> Added 1 new compiler to /path/to/home/.spack/linux/compilers.yaml
gcc@X.Y.Z

==> Compilers are defined in the following files:
/path/to/home/.spack/linux/compilers.yaml

where

15.3. Clone a copy of GCClassic, GCHP, or HEMCO 73

https://github.com/geoschem/GCClassic
https://github.com/geoschem/GCHP
https://github.com/geoschem/HEMCO
https://gcc.gnu.org/onlinedocs/10.2.0/

GCHP, Release 14.2.0

• /path/to/home indicates the absolute path of your home directory (aka ${HOME})

• X.Y.Z indicates the version of the GCC compiler that you just built with Spack.

Tip: Use this command to view the list of compilers that have been registered with Spack:

$ spack compiler list

Use this command to view the installation location for a Spackguide-built software package:

$ spack location -i <package-name>

15.5 Build GEOS-Chem dependencies and useful tools

Once the compiiler has been built and registered, you may proceed to building the software dependencies for GEOS-
Chem Classic, GCHP, and HEMCO.

The Spack installation commands that you will use take the form:

$ spack ${scope_args} install <package-name>%gcc^openmpi

where

• ${scope_args} is the environment variable that you defined above;

• <package-name> is a placeholder for the name of the software package that you wish to install;

• %gcc tells Spack that it should use the GNU Compiler Collection version that you just built;

• ^openmpi tells Spack to use OpenMPI when building software packages. You may omit this setting for
packages that do not require it.

Spack will download and build <package-name> plus all of its dependencies that have not already been installed.

Note: Use this command to find out what other packages will be built along with <package-name>:

$ spack spec <package-name>

This step is not required, but may be useful for informational purposes.

Use the following commands to build dependencies for GEOS-Chem Classic, GCHP, and HEMCO, as well as some
useful tools for working with GEOS-Chem data:

1. Build the esmf (Earth System Model Framework), hdf5, netcdf-c, netcdf-fortran, and openmpi
packages:

$ spack ${scope_args} install esmf%gcc^openmpi

The above command will build all of the above-mentioned packages in a single step.

Note: GEOS-Chem Classic does not require esmf. However, we recommend that you build ESMF anyway so
that it will already be installed in case you decide to use GCHP in the future.

74 Chapter 15. Build required software with Spack

GCHP, Release 14.2.0

2. Build the cdo (Climate Data Operators) and nco (netCDF operators) packages. These are command-line tools
for editing and manipulating data contained in netCDF files.

$ spack ${scope_args} install cdo%gcc^openmpi

$ spack ${scope_args} install nco%gcc^openmpi

3. Build the ncview package, which is a quick-and-dirty netCDF file viewer.

$ spack ${scope_args} install ncview%gcc^openmpi

4. Build the flex (Fast Lexical Analyzer) package. This is a dependency of the Kinetic PreProcessor (KPP), with
which you can update GEOS-Chem chemical mechanisms.

$ spack ${scope_args} install flex%gcc

Note: The flex package does not use OpenMPI. Therefore, we can omit ^openmpi from the above com-
mand.

At any time, you may see a list of installed packages by using this command:

$ spack find

15.6 Add spack load commands to your environment file

We recommend “sourcing” the load_script that you created in the previous section from within an environment file.
This is a file that not only loads the required modules but also defines settings that you need to run GEOS-Chem
Classic, GCHP, or the HEMCO standalone.

Please see the following links for sample environment files.

• Sample GEOS-Chem Classic environment file

• Sample GCHP environment file

• Sample HEMCO environment file

Copy and paste the code below into a file named ${model}.env (using the ${model} environment variable that
you defined above). Then replace any existing module load commands with the following code:

#===
Load Spackguide-built modules
#===

Setup Spack if it hasn't already been done
${SPACK_ROOT} will be blank if the setup-env.sh script hasn't been called.
(modifiable) Replace "/path/to/spack" with the path to your Spack root directory
if [["x${SPACK_ROOT}" == "x"]]; fi

source /path/to/spack/source/spack/setup-env.sh
fi

(continues on next page)

15.6. Add spack load commands to your environment file 75

https://kpp.readthedocs.io
https://geos-chem.readthedocs.io/en/stable/gcc-guide/01-startup/login-env-files-gnu.html
https://github.com/geoschem/geos-chem/blob/main/run/GCHP/runScriptSamples/operational_examples/harvard_cannon/gchp.gfortran10.2_openmpi4_cannon.env
https://hemco.readthedocs.io/en/stable/hco-sa-guide/login-env.html

GCHP, Release 14.2.0

(continued from previous page)

Load esmf, hdf5, netcdf-c, netcdf-fortran, openmpi
spack load esmf%gcc^openmpi

Load netCDF packages (cdo, nco, ncview)
spack load cdo%gcc^openmpi
spack load nco%gcc^openmpi
spack load ncview

Load flex
spack load flex

#===
Set environment variables for compilers
#===
export CC=gcc
export CXX=g++
export FC=gfortran
export F77=gfortran

#===
Set environment variables for Spack-built modules
#===

openmpi (needed for GCHP)
export MPI_ROOT=$(spack-location -i openmpi%gcc)

esmf (needed for GCHP)
export ESMF_DIR=$(spack location -i esmf%gcc^openmpi)
export ESMF_LIB=${ESMF_DIR}/lib
export ESMF_COMPILER=gfortran
export ESMF_COMM=openmpi
export ESMF_INSTALL_PREFIX=${ESMF_DIR}/INSTALL_gfortran10_openmpi4

netcdf-c
export NETCDF_HOME=$(spack location -i netcdf-c%gcc^openmpi)
export NETCDF_LIB=$NETCDF_HOME/lib

netcdf-fortran
export NETCDF_FORTRAN_HOME=$(spack location -i netcdf-fortran%gcc^openmpi)
export NETCDF_FORTRAN_LIB=$NETCDF_FORTRAN_HOME/lib

flex
export FLEX_HOME=$(spack location -i flex%gcc^openmpi)
export FLEX_LIB=$NETCDF_FORTRAN_HOME/lib
export KPP_FLEX_LIB_DIR=${FLEX_LIB} # OPTIONAL: Needed for KPP

To apply these settings into your login environment, type

source ${model}.env # One of GCClassic.env, GCHP.env, HEMCO.env

To test if the modules have been loaded properly, type:

$ nf-config --help # netcdf-fortran configuration utility

If you see a screen similar to this, you know that the modules have been installed properly.

76 Chapter 15. Build required software with Spack

GCHP, Release 14.2.0

Usage: nf-config [OPTION]

Available values for OPTION include:

--help display this help message and exit
--all display all options
--cc C compiler
--fc Fortran compiler
--cflags pre-processor and compiler flags
--fflags flags needed to compile a Fortran program
--has-dap whether OPeNDAP is enabled in this build
--has-nc2 whether NetCDF-2 API is enabled
--has-nc4 whether NetCDF-4/HDF-5 is enabled in this build
--has-f90 whether Fortran 90 API is enabled in this build
--has-f03 whether Fortran 2003 API is enabled in this build
--flibs libraries needed to link a Fortran program
--prefix Install prefix
--includedir Include directory
--version Library version

15.7 Clean up

At this point, you can remove the ${model} directory as it is not needed. (Unless you would like to keep it to build
the executable for your research with GEOS-Chem Classic, GCHP, or HEMCO.)

The spack directory needs to remain. As mentioned above, this directory cannot be moved.

You can clean up any Spack temporary build stage information with:

$ spack clean -m
==> Removing cached information on repositories

That’s it!

15.7. Clean up 77

GCHP, Release 14.2.0

78 Chapter 15. Build required software with Spack

CHAPTER

SIXTEEN

SET UP AWS PARALLELCLUSTER

Important: AWS ParallelCluster and FSx for Lustre costs several hundred dollars per month to use. See FSx for
Lustre Pricing and EC2 Pricing for details.

This page has instructions on setting up AWS ParallelCluster for running GCHP simulations. AWS ParallelCluster is
a service that lets you create your own HPC cluster. Using GCHP on AWS ParallelCluster is similar to using GCHP
on any other HPC, so these instructions focus on AWS ParallelCluster setup, and the other GCHP documentation like
Compile, Download Input Data, and Run the model is appropriate for using GCHP on AWS ParallelCluster.

The workflow for getting started with GCHP simulations using AWS ParallelCluster is

1. Create an FSx for Lustre file system (described on this page)

2. Configure AWS CLI (described on this page)

3. Configure AWS ParallelCluster (described on this page)

4. Build GCHP’s dependencies on your AWS ParallelCluster

5. Follow the normal GCHP User Guide

a. Download the model

b. Compile

c. Create a Run Directory

d. Download Input Data

e. Run the model

These instructions were written using AWS ParallelCluster 3.0.1.

16.1 1. Create an FSx for Lustre file system

Start by creating an FSx for Lustre file system. This is persistent storage that will be mounted to your AWS Parallel-
Cluster cluster. This file system will be used for storing GEOS-Chem input data and for housing your GEOS-Chem
run directories.

Refer to the official FSx for Lustre Instructions for instructions on creating the file system. Only Step 1, Create your
Amazon FSx for Lustre file system, is necessary. Step 2, Install the Lustre client, and subsequent steps have instructions
for mounting your file system to EC2 instances, but AWS ParallelCluster automates this for us.

In subsequent steps you will need the following information about your FSx for Lustre file system:

• its ID (fs-XXXXXXXXXXXXXXXXX)

79

https://aws.amazon.com/fsx/lustre/pricing/
https://aws.amazon.com/fsx/lustre/pricing/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/fsx/latest/LustreGuide/getting-started-step1.html

GCHP, Release 14.2.0

• its subnet (subnet-YYYYYYYYYYYYYYYYY)

• its security group that has the inbound network rules (sg-ZZZZZZZZZZZZZZZZZ).

Once you have created the file system, proceed with 2. AWS CLI Installation and First-Time Setup.

16.2 2. AWS CLI Installation and First-Time Setup

Next you need to make sure you have the AWS CLI installed and configured. The AWS CLI is a terminal command,
aws, for working with AWS services. If you have already installed and configured the AWS CLI previously, continue
to 3. Create your AWS ParallelCluster.

Install the aws command: Official AWS CLI Install Instructions. Once you have installed the aws command, you
need to configure it with the credentials for your AWS account:

$ aws configure

For instructions on aws configure, refer to the Official AWS Instructions or this YouTube tutorial.

16.3 3. Create your AWS ParallelCluster

Note: You should also refer to the offical AWS documentation on Configuring AWS ParallelCluster. Those in-
structions will have the latest information on using AWS ParallelCluster. The instructions on this page are meant to
supplement the official instructions, and point out the important parts of the configuration for use with GCHP.

Next, install AWS ParallelCluster with pip. This requires Python 3.

$ pip install aws-parallelcluster

Now you should have the pcluster command. You will use this command to performs actions like: creating a
cluster, shutting your cluster down (temporarily), destroying a cluster, etc.

Create a cluster config file by running the pcluster configure command:

$ pcluster configure --config cluster-config.yaml

The following settings are recommended:

• Scheduler: slurm

• Operating System: alinux2

• Head node instance type: c5n.large

• Number of queues: 1

• Compute instance type: c5n.18xlarge

• Maximum instance count: Your choice. This is the maximum number execution nodes that can run concurrently.
Execution nodes automatically spinup and shutdown according when there are jobs in your queue.

Now you should have a file name cluster-config.yaml. This the configuration file with setting for a
cluster. Before starting your cluster with the pcluster create-cluster command, you need to modify
cluster-config.yaml so that your FSx for Lustre file system is mounted to your cluster. Use the following
cluster-config.yaml as a template for these changes.

80 Chapter 16. Set up AWS ParallelCluster

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.youtube.com/watch?v=Rp-A84oh4G8
https://docs.aws.amazon.com/parallelcluster/latest/ug/install-v3-configuring.html
https://docs.aws.amazon.com/parallelcluster/latest/ug/parallelcluster-version-3.html

GCHP, Release 14.2.0

Region: us-east-1 # [replace with] the region with your FSx for Lustre file system
Image:

Os: alinux2
HeadNode:

InstanceType: c5n.large # smallest c5n node to minimize costs when head-node is up
Networking:
SubnetId: subnet-YYYYYYYYYYYYYYYYY # [replace with] the subnet of your FSx for

→˓Lustre file system
AdditionalSecurityGroups:
- sg-ZZZZZZZZZZZZZZZZZ # [replace with] the security group with inbound rules

→˓for your FSx for Lustre file system
LocalStorage:
RootVolume:

VolumeType: io2
Ssh:
KeyName: AAAAAAAAAA # [replace with] the name of your ssh key name for AWS CLI

SharedStorage:
- MountDir: /fsx # [replace with] where you want to mount your FSx for Lustre file

→˓system
Name: FSxExtData
StorageType: FsxLustre
FsxLustreSettings:
FileSystemId: fs-XXXXXXXXXXXXXXXXX # [replace with] the ID of your FSx for

→˓Lustre file system
Scheduling:

Scheduler: slurm
SlurmQueues:
- Name: main
ComputeResources:
- Name: c5n18xlarge

InstanceType: c5n.18xlarge
MinCount: 0
MaxCount: 10 # max number of concurrent exec-nodes
DisableSimultaneousMultithreading: true # disable hyperthreading (recommended)
Efa:

Enabled: true
Networking:

SubnetIds:
- subnet-YYYYYYYYYYYYYYYYY # [replace with] the subnet of your FSx for Lustre

→˓file system (same as above)
AdditionalSecurityGroups:
- sg-ZZZZZZZZZZZZZZZZZ # [replace with] the security group with inbound

→˓rules for your FSx for Lustre file system
PlacementGroup:

Enabled: true
ComputeSettings:
LocalStorage:
RootVolume:
VolumeType: io2

When you are ready, run the pcluster create-cluster command.

$ pcluster create-cluster --cluster-name pcluster --cluster-configuration cluster-
→˓config.yaml

It may take 30 minutes or an hour for your cluster’s status to change to CREATE_COMPLETE. You can check the
status of you cluster with the following command.

16.3. 3. Create your AWS ParallelCluster 81

GCHP, Release 14.2.0

$ pcluster describe-cluster --cluster-name pcluster

Once your cluster’s status is CREATE_COMPLETE, run the pcluster ssh command to ssh into it.

$ pcluster ssh --cluster-name pcluster -i ~/path/to/keyfile.pem

At this point, your cluster is set up and you can use it like any other HPC. Your next steps will be build-
ing_gchp_dependencies followed by the normal instructions found in the User Guide.

82 Chapter 16. Set up AWS ParallelCluster

CHAPTER

SEVENTEEN

CACHE INPUT DATA ON FAST DRIVES

This page describes how to set up a cache of GEOS-Chem input data. This is useful if you want to temporarily transfer
a simulation’s input data to a performant hard drive. This can improve the speed of your GCHP simulation by reducing
the time spent reading input data. Caching input data is also useful if the file system that stores your GEOS-Chem
input data repository has issues that are causing simulations to crash (i.e., you can transfer the data for your simulation
to more stable hard drives).

17.1 Install the bashdatacatalog

Install the bashdatacatalog with the following command. Follow the prompts and restart your console.

gcuser:~$ bash <(curl -s https://raw.githubusercontent.com/LiamBindle/bashdatacatalog/
→˓main/install.sh)

Note: You can rerun this command to upgrade to the latest version.

17.2 Set Up the ExtDataCache Directory

Next, we are going to set up the ExtDataCache directory. You should put this directory in the appropriate path so
that desired hard drives are used. For example, if you have performance hard drives at /scratch/, create a directory
like /scratch/ExtDataCache/. We are going to use ExtDataCache/ to temporarily store the input data for
simulations.

In the future, the idea is that you will copy the prerequisite input data to ExtDataCache/ before you run a simula-
tion. Since ExtDataCache/ is temporary data, you can delete it periodically to “purge” it. Alternatively, you can
use bashdatacatalog commands to selectively remove files. If you are running long simulations, you can keep a few
years of data in ExtDataCache/, sort of like a moving window tracking the progress of your simulation.

Create a subdirectory in ExtDataCache/ to store catalog files. You need a set of four catalog files for each simula-
tion:

• MeteorologicalInputs.csv – Specifies the simulation’s meteorological input data

• ChemistryInputs.csv – Specifies the simulation’s chemistry input data

• EmissionsInputs.csv – Specifies the simulation’s emissions input data

• InitialConditions.csv – Specifies the default restart files for the simulation

83

GCHP, Release 14.2.0

A good directory structure for catalog files is ExtDataCache/CatalogFiles/SIMULATION_ID where
SIMULATION_ID is a placeholder for a unique identifier for your simulation. These instructions will put a demo
set of catalog files in ExtDataCache/CatalogFiles/DemoSimulation:

gcuser:~$ cd /scratch
gcuser:/scratch$ mkdir ExtDataCache # for storing input data for simulations
gcuser:/scratch$ mkdir ExtDataCache/CatalogFiles # for storing catalog files
gcuser:/scratch$ mkdir ExtDataCache/CatalogFiles/DemoSimulation # for storing
→˓catalog files for a specific simulation

Next, download the catalog files for the appropriate version of GEOS-Chem. You can find the GEOS-Chem catalog
files here.

gcuser:/scratch$ cd ExtDataCache/CatalogFiles/DemoSimulation
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.
→˓wustl.edu/ExtData/DataCatalogs/MeteorologicalInputs.csv
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.
→˓wustl.edu/ExtData/DataCatalogs/13.3/ChemistryInputs.csv
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.
→˓wustl.edu/ExtData/DataCatalogs/13.3/EmissionsInputs.csv
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.
→˓wustl.edu/ExtData/DataCatalogs/13.3/InitialConditions.csv

Edit the catalog files according to your simulation configuration. You can enable/disable data collections by editing
column 3 (1 to enable a collection, 0 to disable a collection). If you are not sure if your simulation needs a collection,
it is better to err on the side of inclusion. The meteorological data collections are the largest by volume. Only one
meteorological data collection in MeteorologicalInputs.csv needs to be enabled.

17.3 Update the Collection URLs

The default collection URLs in the catalog files point to http://geoschemdata.wustl.edu/ExtData. To copy data from
your primary ExtData repository, edit column 2 of the catalog files. For example, if your primary ExtData repository is
at /storage/ExtData you would replace http://geoschemdata.wustl.edu/ExtData with file://
/storage/ExtData in column 2 of the catalog files. Below is a sed command that will do the replacement.

gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ export FIND_STR="http://
→˓geoschemdata.wustl.edu/ExtData"
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ export REPLACE_STR="file:///
→˓storage/ExtData" # replace '/storage/ExtData' with the path to your ExtData
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ sed -i "s#${FIND_STR}#$
→˓{REPLACE_STR}#g" *.csv # do url find/replace

17.4 Copy Data to ExtDataCache

Navigate to ExtDataCache/. One you are there, run bashdatacatalog-fetch to fetch metadata from Ext-
Data. The arguments to bashdatacatalog-fetch are catalog files. This metadata includes the file list for each
data collection, and the details to classify each file as a temporal or static file.

gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ cd ../..
gcuser:/scratch/ExtDataCache$ bashdatacatalog-fetch CatalogFiles/DemoSimulation/*.csv

84 Chapter 17. Cache Input Data on Fast Drives

http://geoschemdata.wustl.edu/ExtData/DataCatalogs
http://geoschemdata.wustl.edu/ExtData

GCHP, Release 14.2.0

Now you can run bashdatacatalog-list commands to generate file lists. The output of
bashdatacatalog-list is controlled using flags. For example, add the -s to list “static” files (input
files that are always required regardless of the simulation period). You can list “temporal” files with the -t flag. You
can filter temporal files according to a date range with the -r START,END argument. You can filter out files that
exist using the -m flag (lists files that are missing). You can specify different file list formats using the -f FORMAT
argument. Below is a command that lists all the files in ExtDataCache that are missing for a simulation starting on
2017-01-01 and ending on 2017-12-31.

gcuser:/scratch/ExtDataCache$ bashdatacatalog-list -stm -r 2016-12-31,2018-01-01
→˓CatalogFiles/DemoSimulation/*.csv

Note: You need to subtract/add one day to the period of your simulation. The example above uses -r
2016-12-31,2018-01-01 because the simulation period is 2017-01-01 to 2017-12-31.

To copy the missing files to ExtDataCache, you can use the argument -f xargs-curl to specify the output list
should be formatted as input to xargs curl. You can use a command similar to the one below to copy all the
missing files for your simulation to ExtDataCache.

gcuser:/scratch/ExtDataCache$ bashdatacatalog-list -stm -r 2016-12-31,2018-01-01 -f
→˓xargs-curl CatalogFiles/DemoSimulation/*.csv | xargs -P 4 curl

Note: The -P 4 argument to xargs allows for 4 parallel copies at a time.

17.5 Update Run Directory to use ExtDataCache

To update a run directory to use ExtDataCache, you can run the following commands. Make sure to set FIND_PATH
to ExtData and REPLACE_PATH to ExtDataCache.

gcuser:/scratch/ExtDataCache$ cd /MyRunDirectory # cd to your run directory
gcuser:/MyRunDirectory$ export FIND_PATH=/storage/ExtData # replace path to
→˓your primary ExtData
gcuser:/MyRunDirectory$ export REPLACE_PATH=/scratch/ExtDataCache # replace with the
→˓path to your ExtDataCache
gcuser:/MyRunDirectory$ function swap_extdata_link { ln -sfn $(readlink $1 | sed "s#$
→˓{FIND_PATH}/*#${REPLACE_PATH}/#") $1; }
gcuser:/MyRunDirectory$ swap_extdata_link ChemDir
gcuser:/MyRunDirectory$ swap_extdata_link HcoDir
gcuser:/MyRunDirectory$ swap_extdata_link MetDir
gcuser:/MyRunDirectory$ sed -i "s#${FIND_PATH}#${REPLACE_PATH}#g" HEMCO_Config.rc
→˓geoschem_config.yml

Now your GCHP simulation will use input data from ExtDataCache.

17.5. Update Run Directory to use ExtDataCache 85

GCHP, Release 14.2.0

17.6 See Also

• bashdatacatalog - Instructions for GEOS-Chem Users

• bashdatacatalog - List of useful commands

• GEOS-Chem Input Data Catalogs

86 Chapter 17. Cache Input Data on Fast Drives

https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/LiamBindle/bashdatacatalog/wiki/3.-Useful-Commands
http://geoschemdata.wustl.edu/ExtData/DataCatalogs/

CHAPTER

EIGHTEEN

USE GCHP CONTAINERS

Containers are an effective method of packaging and delivering GCHP’s source code and requisite libraries. We offer
up-to-date Docker images for GCHP through Docker Hub. These images contain pre-built GCHP source code and the
tools for creating a GCHP run directory. The instructions below show how to create a run directory and run GCHP
using Singularity , which can be installed using instructions at the previous link or through Spack. Singularity is a
container software that is preferred over Docker for many HPC applications due to security issues. Singularity can
automatically convert and use Docker images.

18.1 Software requirements

There are only two software requirements for running GCHP using a Singularity container:

• Singularity itself

• An MPI implementation that matches the type and major/minor version of the MPI implementation inside of
the container

The current images use OpenMPI 4.0.1 internally, which has been confirmed to work with external installations of
OpenMPI 4.0.2-4.0.5.

18.2 Performance

Because we do not include optimized infiniband libraries within the provided Docker images, container-based GCHP
is currently not as fast as other setups. Container-based benchmarks deployed on Harvard’s Cannon cluster using up
to 360 cores at c90 (~1x1.25) resolution averaged 15% slower than equivalent non-container runs. Performance may
worsen at a higher core count and resolution. If this performance hit is not a concern, these containers are the quickest
way to setup and run GCHP.

18.3 Setting up and running GCHP using Singularity

Available GCHP images are listed on Docker Hub. The following command pulls the image of GCHP 13.0.2 and
converts it to a Singularity image named gchp.sif in your current directory.

$ singularity pull gchp.sif docker://geoschem/gchp:13.0.2

If you do not already have GCHP data directories, create a directory where you will later store data files. We will call
this directory DATA_DIR and your run directory destination WORK_DIR in these instructions. Make sure to replace
these names with your actual directory paths when executing commands from these instructions

87

https://hub.docker.com/r/geoschem/gchp
https://sylabs.io/guides/3.0/user-guide/installation.html
https://hub.docker.com/r/geoschem/gchp/tags?page=1&ordering=last_updated

GCHP, Release 14.2.0

The following command executes GCHP’s run directory creation script. Within the container, your DATA_DIR and
WORK_DIR directories are visible as /ExtData and /workdir. Use /ExtData and /workdir when asked to specify your
ExtData location and run directory target folder, respectively, in the run directory creation prompts.

$ singularity exec -B DATA_DIR:/ExtData -B WORK_DIR:/workdir gchp.sif /opt/geos-chem/
→˓bin/createRunDir.sh

Once the run directory is created, it will be available at WORK_DIR on your host machine. cd to WORK_DIR.

To avoid having to specify the locations of your data and run directories (RUN_DIR) each time you execute a command
in the singularity container, we will add these to an environment file called ~/.container_run.rc and point the gchp.env
symlink to this environment file. We will also load MPI in this environment file (edit the first line below as appropriate
to your system).

$ echo "module load openmpi/4.0.3" > ~/.container_run.rc
$ echo "export SINGULARITY_BINDPATH=\"DATA_DIR:/ExtData, RUN_DIR:/rundir\"" >> ~/.
→˓container_run.rc
$./setEnvironment.sh ~/.container_run.rc
$ source gchp.env

We will now move the pre-built gchp executable and example run scripts to the run directory.

$ rm runScriptSamples #remove broken link
$ singularity exec ../gchp.sif cp /opt/geos-chem/bin/gchp /rundir
$ singularity exec ../gchp.sif cp -rf /gc-src/run/runScriptSamples/ /rundir

Before running GCHP in the container, we need to create an execution script to tell the container to load its internal
environment before running GCHP. We’ll call this script internal_exec.

$ echo ". /init.rc" > ./internal_exec
$ echo "cd /rundir" >> ./internal_exec
$ echo "./gchp" >> ./internal_exec
$ chmod +x ./internal_exec

The last change you need to make to run GCHP in a container is to edit your run script (whether from runScript-
Samples/ or otherwise). Replace the typical execution line in the script (where mpirun or srun is called) with the
following:

$ time mpirun singularity exec ../gchp.sif /rundir/internal_exec >> ${log}

You can now setup your run configuration as normal using setCommonRunSettings.sh and tweak Slurm parameters in
your run script.

If you already have GCHP data directories, congratulations! You’ve completed all the steps you need to run GCHP in
a container. If you still need to download data directories, read on.

18.4 Downloading data directories using GEOS-Chem Classic’s dry-
run option

GCHP does not currently support automated download of requisite data directories, unlike GEOS-Chem Classic.
Luckily we can use a GC Classic container to execute a dry-run that matches the parameters of our GCHP run to
download data files.

88 Chapter 18. Use GCHP Containers

http://wiki.seas.harvard.edu/geos-chem/index.php/Downloading_data_with_the_GEOS-Chem_dry-run_option

GCHP, Release 14.2.0

$ #get GC Classic image from https://hub.docker.com/r/geoschem/gcclassic
$ singularity pull gcc.sif docker://geoschem/gcclassic:13.0.0-alpha.13-7-ge472b62
$ #create a GC Classic run directory (GC_CLASSIC_RUNDIR) in WORK_DIR that matches
$ #your GCHP rundir (72-level, standard vs. benchmark vs. transport tracers, etc.)
$ singularity exec -B WORK_DIR:/workdir gcc.sif /opt/geos-chem/bin/createRunDir.sh
$ cd GC_CLASSIC_RUNDIR
$ #get pre-compiled GC Classic executable
$ singularity exec -B .:/classic_rundir ../gcc.sif cp /opt/geos-chem/bin/gcclassic /
→˓classic_rundir

Make sure to tweak dates of run in geoschem_config.yml as needed, following info here.

$ #create an internal execute script for your container
$ echo ". /init.rc" > ./internal_exec
$ echo "cd /classic_rundir" >> ./internal_exec
$ echo "./gcclassic --dryrun" >> ./internal_exec
$ chmod +x ./internal_exec
$ #run the model, outputting requisite file info to log.dryrun
$ singularity exec -B .:/classic_rundir ../gcc.sif /classic_rundir/internal_exec >
→˓log.dryrun

Follow instructions here for downloading your relevant data. Note that you will still need a restart file for your GCHP
run which will not be automatically retrieved by this download script.

18.4. Downloading data directories using GEOS-Chem Classic’s dry-run option 89

http://wiki.seas.harvard.edu/geos-chem/index.php/Downloading_data_with_the_GEOS-Chem_dry-run_option#Executing_GEOS-Chem_in_dry-run_mode
http://wiki.seas.harvard.edu/geos-chem/index.php/Downloading_data_with_the_GEOS-Chem_dry-run_option#Downloading_data_from_dry-run_output

GCHP, Release 14.2.0

90 Chapter 18. Use GCHP Containers

CHAPTER

NINETEEN

STRETCHED-GRID SIMULATION

Note: Stretched-grid simulations are described in [[Bindle et al., 2021]]. This paper also discusses related topics of
consideration and offers guidance for choosing appropriate stretching parameters.

19.1 Overview

A stretched-grid is a cubed-sphere grid that is “stretched” to enhance its resolution in a region. To set up a stretched-
grid simulation you need to do the following:

1. Choose stretching parameters, including stretch factor and target latitude and longitude.

2. Create a stretched grid restart file for your simulation using your chosen stretch parameters.

3. Configure the GCHP run directory to specify stretched grid parameters in setCommonRunSettings.sh
and use your stretched grid restart file.

19.1.1 Choose stretching parameters

The target face is the face of a stretched-grid that shrinks so that the grid resolution is finer. The target face is centered
on a target point, and the degree of stretching is controlled by a parameter called the stretch-factor. Relative to a
normal cubed-sphere, the resolution of the target face is refined by approximately the stretch-factor. For example, a
C60 stretched-grid with a stretch-factor of 3.0 has approximately C180 (~50 km) resolution in the target face. The
enhancement-factor is approximate because (1) the stretching gradually changes with distance from the target point,
and (2) gnominic cubed-sphere grids are quasi-uniform with grid-boxes at face edges being ~1.5x shorter than at face
centers.

You can choose a stretch-factor and target point using the interactive figure below. You can reposition the target face by
changing the target longitude and target latitude. The domain of refinement can be increased or decreased by changing
the stretch-factor. Choose parameters so that the target face roughly covers the refion that you want to refine.

Note: The interactive figure above can be a bit fiddly. Refresh the page if the view gets messed up. If the figure above
is not showing up properly, please open an issue.

Next you need to choose a cubed-sphere size. The cubed-sphere size must be an even integer (e.g., C90, C92, C94,
etc.). Remember that the resolution of the target face is enhanced by approximately the stretch-factor.

91

GCHP, Release 14.2.0

19.1.2 Create a restart file

A simulation restart file must have the same grid as the simulation. For example, a C180 simulation requires a restart
file with a C180 grid. Likewise, a stretched-grid simulation needs a restart file with the same stretched-grid (i.e., an
identical cubed-sphere size, stretch-factor, target longitude, and target latitude).

You can regrid an existing restart file to a stretched-grid using the GEOS-Chem python package GCPy. See the Re-
gridding section of the GCPy documentation for instructions. Once you have created a restart file for your simulation,
you can move on to updating your simulation’s configuration files.

Note: A stretched grid restart file is available for download if you would like to quickly get set up to run a stretched
grid simulation. See the GEOSCHEM_RESTARTS/GC_14.0.0 directory in the GEOS-Chem data repository.

19.1.3 Configure run directory

Modify the section of setCommonRunSettings.sh that controls the simulation grid. Turn STRETCH_GRID to
ON and update CS_RES, STRETCH_FACTOR, TARGET_LAT, and TARGET_LON for your specific grid.

#--
GRID RESOLUTION
#--
Integer representing number of grid cells per cubed-sphere face side
CS_RES=24

#--
STRETCHED GRID
#--
Turn stretched grid ON/OFF. Follow these rules if ON:
(1) Minimum STRETCH_FACTOR value is 1.0001
(2) TARGET_LAT and TARGET_LON are floats containing decimal
(3) TARGET_LON in range [0,360)
STRETCH_GRID=OFF
STRETCH_FACTOR=3.0
TARGET_LAT=40.0
TARGET_LON=260.0

Execute ./setCommonRunSettings.sh to update your run directory’s configuration files.

$./setCommonRunSettings.sh

You will also need to configure the run directory to use the stretched grid restart file. Update cap_restart to match
the date of your restart file. This will also be the start date of the run. Copy or symbolically link to your restart file in
the Restarts subdirectory with the proper filename format. The format includes global resolution but not stretched
grid resolution. To avoid confusion about what grid the file contains you can symbolically link to a file with stretched
grid parameters in its filename. Run setRestartLink.sh to set symbolic link gchp_restart.nc4 to point to
your restart file based on start date in cap_restart and global grid resolution in setCommonRunSettings.sh.
This is also included as a pre-run step in all example run scripts provided in runScriptSamples.

92 Chapter 19. Stretched-Grid Simulation

https://gcpy.readthedocs.io/en/stable/Regridding.html
https://gcpy.readthedocs.io/en/stable/Regridding.html
http://geoschemdata.wustl.edu/ExtData/GEOSCHEM_RESTARTS/GC_14.0.0/

GCHP, Release 14.2.0

19.2 Tutorial: Eastern United States

This tutorial walks you through setting up and running a stretched-grid simulation for ozone in the eastern United
States. The grid parameters for this tutorial are:

Parameter Value
Stretch-factor 3.6
Cubed-sphere size C60
Target latitude 37° N
Target longitude 275° E

These parameters are chosen so that the target face covers the eastern United States. Some back-of-the-envelope
resolution calculations are:

average resolution of target face = Rtf ≈
10000 km

N× S
= 46 km

coarsest resolution in target face (at the center) ≈ Rtf × 1.2 = 56 km

finest resolution in target face (at the edges) ≈ Rtf ÷ 1.2 = 39 km

coarsest resolution globally (at target antipode) ≈ Rtf × S2 × 1.2 = 720 km

where N is the cubed-sphere size and S is the stretch-factor. The actual values of these, calculated from the grid-box
areas, are 46 km, 51 km, 42 km, and 664 km respectively.

Note: This tutorial uses a relatively large stretch-factor. A smaller stretch-factor, such as 2.0 rather than 3.6, would
have a broader refinement and smaller range resolutions.

19.2.1 Requirements

Before continuing with the tutorial check that you have all pre-requisites:

• You are able to run global GCHP simulations using MERRA2 data for July 2019

• You have the latest version of GEOS-Chem python package GCPy

• You have python package cartopy with version >= 0.19

19.2.2 Create run directory

Create a standard full chemistry run directory that uses MERRA2 meteorology. The rest of the tutorial assume that
your current working directory is your run directory.

19.2. Tutorial: Eastern United States 93

GCHP, Release 14.2.0

19.2.3 Create restart file

You will need to create a restart file with a horizontal resolution that matches your chosen stretched-grid resolution.
Unlike other input data, GCHP ingests the restart file with no online regridding. Using a restart file with a horizontal
grid that does not match the run grid will result in a run-time error. To create a restart file for a stretched-grid
simulation you can regrid a restart file with a uniform grid using GCPy. Follow instructions on how to create a GCHP
stretched grid restart file in the GCPy documentation. For this tutorial regrid the c48 fullchem restart file for July
1, 2019 that comes with a GCHP fullchem run directory (GEOSChem.Restart.20190701_0000z.c48.nc4).
Grid resolution is 60, stretch factor is 3.6, target longitude is 275, and target latitude is 37. Name the output file
initial_GEOSChem_rst.EasternUS_SG_fullchem.c60.s3.6_37N_275E.nc.

19.2.4 Configure run directory

Make the following modifications to setCommonRunSettings.sh:

• Change the simulation’s duration to 7 days

• Turn on auto-update of diagnostics

• Set diagnostic frequency to 24 hours (daily)

• Set diagnostic duration to 24 hours (daily)

• Update the compute resources as you like. This simulation’s computational demands are about 50% more than
a C48 or 2°x2.5° simulation.

• Change global grid resolution to 60

• Change STRETCH_GRID to ON

• Change STRETCH_FACTOR to 3.6

• Change TARGET_LAT to 37.0

• Change TARGET_LON to 275.0

Note: In our tests this simulation took approximately 7 hours to run using 30 cores on 1 node. For comparison, it
took 2 hours to run using 180 cores across 6 notes. You may choose your compute resources based on how long you
are willing to wait for your run to end.

Next, execute setCommonRunSettings.sh to apply the updates to the various configuration files:

$./setCommonRunSettings.sh

Before running GCHP you also need to configure the model to use your stretched-grid restart file. Move or
copy your restart file to the Restarts subdirectory. Then change the symbolic link GEOSChem.Restart.
20190701_0000z.c48.nc4 to point to your stretched-grid restart file while keeping the name of the link the
same.

$ ln -nsf initial_GEOSChem_rst.EasternUS_SG_fullchem.c60.s3.6_37N_275E.nc GEOSChem.
→˓Restart.20190701_0000z.c48.nc4

You could also rename your restart file to this format but this would remove valuable information about the content of
the file from the filename. Symbolically linking is a better way to preserve the information to avoid errors. You can
check that you did this correctly by running setRestartLink.sh in the run directory.

94 Chapter 19. Stretched-Grid Simulation

https://gcpy.readthedocs.io/en/stable/Regridding.html

GCHP, Release 14.2.0

19.2.5 Run GCHP

To run GCHP you can use the example run script for running interactively located at runScriptSamples/gchp.
local.run as long as you have enough resources available locally, e.g. 30 cores on 1 node. Copy it to the main
level of your run directory and then execute it. If you want to use more resources you can submit as a batch job to
your scheduler.

$./gchp.local.run

Log output of the run will be sent to log file gchp.20190701_0000z.log. Check that your run was successful
by inspecting the log and looking for output in the OutputDir subdirectory.

19.2.6 Plot the output

Plotting stretched grid is simple using Python. Below is an example plotting ozone at model level 22. All libraries are
available if using a python environment compatible with GCPy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import xarray as xr

Load 24-hr average concentrations for 2019-07-01
ds = xr.open_dataset('GCHP.DefautlCollection.20190701_0000z.nc4')

Get Ozone at level 22
ozone_data = ds['SpeciesConcVV_O3'].isel(time=0, lev=22).squeeze()

Setup axes
ax = plt.axes(projection=ccrs.EqualEarth())
ax.set_global()
ax.coastlines()

Plot data on each face
for face_idx in range(6):

x = ds.corner_lons.isel(nf=face_idx)
y = ds.corner_lats.isel(nf=face_idx)
v = ozone_data.isel(nf=face_idx)
pcm = plt.pcolormesh(

x, y, v,
transform=ccrs.PlateCarree(),
vmin=20e-9, vmax=100e-9

)

plt.colorbar(pcm, orientation='horizontal')
plt.show()

19.2. Tutorial: Eastern United States 95

GCHP, Release 14.2.0

96 Chapter 19. Stretched-Grid Simulation

CHAPTER

TWENTY

OUTPUT ALONG A TRACK

HISTORY collections can define a track_file that specifies a 1D timeseries of coordinates that the model is
sampled at. The collection output has the same coordinates as the track file. This feature can be used to sample GCHP
along a satellite track or a flight path. A track file is a NetCDF file with the following format

$ ncdump -h example_track.nc
netcdf example_track.nc {
dimensions:

time = 1234 ;
variables:

float time(time) ;
time:_FillValue = NaNf ;
time:long_name = "time" ;
time:units = "hours since 2020-06-01 00:00:00" ;

float longitude(time) ;
longitude:_FillValue = NaNf ;
longitude:long_name = "longitude" ;
longitude:units = "degrees_east" ;

float latitude(time) ;
latitude:_FillValue = NaNf ;
latitude:long_name = "latitude" ;
latitude:units = "degrees_north" ;

}

Important: Longitudes must be between 0 and 360.

Important: When using recycle_track, the time offsets must be between 0 and 24 hours.

To configure 1D output, you can add the following attributes to any collection in HISTORY.rc.

track_file Path to a track file. The associated collection will be sampled from the model along this track.
A track file is a 1-dimensional timeseries of latitudes and longitudes that the model is be sampled at
(nearest neighbor).

recycle_track Either .false. (default) or .true.. When enabled, HISTORY replaces the date of the
time coordinate in the track file with the simulation’s current day. This lets you use the same track
file for every day of your simulation.

Note: 1D output only works for instantaneous sampling.

The frequency attribute is ignored when track_file is used.

97

GCHP, Release 14.2.0

20.1 Creating a satellite track file

GCPy includes a command line tool, gcpy.raveller_1D, for generating track files for polar orbiting satellites.
These track files will sample model grid-boxes at the times that correspond to the satellite’s overpass time. You can also
use this tool to “unravel” the resulting 1D output back to a cubed-sphere grid. Below is an example of using gcpy.
raveller_1D to create a track file for a C180 simulation for TROPOMI, which is in ascending sun-synchronous
orbit with 14 orbits per day and an overpass time of 13:30. Please see the GCPy documentation for this program’s
exact usage, and for installation instructions.

$ python -m gcpy.raveller_1D create_track --cs_res 24 --overpass_time 13:30 --
→˓direction ascending --orbits_per_day 14 -o tropomi_overpass_c24.nc

The resulting track file, tropomi_overpass_c24.nc, looks like so

$ ncdump -h tropomi_overpass_c24.nc
netcdf tropomi_overpass_c24 {
dimensions:

time = 3456 ;
variables:

float time(time) ;
time:_FillValue = NaNf ;
time:long_name = "time" ;
time:units = "hours since 1900-01-01 00:00:00" ;

float longitude(time) ;
longitude:_FillValue = NaNf ;
longitude:long_name = "longitude" ;
longitude:units = "degrees_east" ;

float latitude(time) ;
latitude:_FillValue = NaNf ;
latitude:long_name = "latitude" ;
latitude:units = "degrees_north" ;

float nf(time) ;
nf:_FillValue = NaNf ;

float Ydim(time) ;
Ydim:_FillValue = NaNf ;

float Xdim(time) ;
Xdim:_FillValue = NaNf ;

}

Note: Track files do not require the nf, Ydim, Xdim variables. The are used for post-process “ravelling” with
gcpy.raveller_1D (changing the 1D output’s coordinates to a cubed-sphere grid).

Note: With recycle_track, HISTORY replaces the reference date (e.g., 1900-01-01) with the simulation’s
current date, so you can use any reference date.

98 Chapter 20. Output Along a Track

GCHP, Release 14.2.0

20.2 Updating HISTORY

Open HISTORY.rc and add the track_file and recycle_track attributes to your desired colleciton. For
example, the following is a custom collection that samples NO2 along the tropomi_overpass_c24.nc.

TROPOMI_NO2.template: '%y4%m2%d2_%h2%n2z.nc4',
TROPOMI_NO2.format: 'CFIO',
TROPOMI_NO2.duration: 240000
TROPOMI_NO2.track_file: tropomi_overpass_c24.nc
TROPOMI_NO2.recycle_track: .true.
TROPOMI_NO2.mode: 'instantaneous'
TROPOMI_NO2.fields: 'SpeciesConc_NO2 ', 'GCHPchem',

::

20.3 Unravelling 1D overpass timeseries

To covert the 1D timeseries back to a cubed-sphere grid, you can use gcpy.raveller_1D. Below is an example of
changing the 1D output back to model grid. Again, see the GCPy documentation for this program’s exact usage, and
for installation instructions.

$ python -m gcpy.raveller_1D unravel --track tropomi_overpass_c24.nc -i OutputDir/
→˓GCHP.TROPOMI_NO2.20180101_1330z.nc4 -o OutputDir/GCHP.TROPOMI_NO2.20180101_1330z.
→˓OVERPASS.nc4

The resulting dataset, GCHP.TROPOMI_NO2.20180101_1330z.OVERPASS.nc4, are simulated concentration
on the model grid, sampled at the times that correspond to TROPOMI’s overpass.

20.2. Updating HISTORY 99

GCHP, Release 14.2.0

100 Chapter 20. Output Along a Track

CHAPTER

TWENTYONE

MANAGE A DATA ARCHIVE WITH BASHDATACATALOG

If you need to download a large amount of input data for GEOS-Chem or HEMCO (e.g. in support of a large user group
at your institution) you may find bashdatacatalog helpful.

21.1 What is bashdatacatalog?

The bashdatacatalog is a command-line tool (written by Liam Bindle) that facilitates synchronizing local data
collections with a remote data source. With the bashdatacatalog, you can run queries on your local data col-
lections to answer questions like “What files am I missing?” or “What files aren’t bitwise identical to remote data?”.
Queries can include a date range, in which case collections with temporal assets are filtered-out accordingly. The
bashdatacatalog can format the results of queries as: a URL download list, a Globus transfer list, an rsync
transfer list, or simply a file list.

The bashdatacatalog was written to facilitate downloading input data for users of the GEOS-Chem atmospheric
chemistry model. The canonical GEOS-Chem input data repository has >1 M files and >100 TB of data, and the input
data required for a simulation depends on the model version and simulation parameters such as start and end date.

21.2 Usage instructions

For detailed instructions on using bashdatacatalog, please see the bashdatacatalog wiki on Github.

Also see our input-data-catalogs Github repository for comma-separated input lists of GEOS-Chem data, separated by
model version.

101

https://github.com/LiamBindle
http://geos-chem.org
http://geos-chem.org
https://github.com/geoschem/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/geoschem/input-data-catalogs

GCHP, Release 14.2.0

102 Chapter 21. Manage a data archive with bashdatacatalog

CHAPTER

TWENTYTWO

CUSTOMIZE SIMULATIONS WITH RESEARCH OPTIONS

Most of the time you will want to use the “out-of-the-box” settings in your GEOS-Chem simulations, as these are the
recommended settings that have been evaluated with benchmark simulations. But depending on your research needs,
you may wish to use alternate simulation options. In this Guide we will show you how you can select these research
options by editing the various GEOS-Chem and HEMCO configuration files.

22.1 Aerosols

22.1.1 Aerosol microphysics

GEOS-Chem incorporates two different aerosol microphysics schemes: APM (Yu and Luo [[Yu and Luo 2009]]) and
TOMAS (Trivitayanurak et al. [[Trivitayanurak et al., 2008]]) as compile-time options for the full-chemistry simula-
tion. Both APM and TOMAS are deactivated by default due to the extra computational overhead that these micro-
physics schemes require.

Follow the steps below to activate either APM or TOMAS microphysics in your full-chemistry simulation.

APM

1. Create a run directory for the Full Chemistry simulation with APM as the extra simulation option.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DAPM=y
$ make -j
$ make install

TOMAS

1. Create a run directory for the Full Chemistry simulation with TOMAS as the extra simulation option.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DTOMAS=y -DTOMAS_BINS=15 -DBPCH_DIAG=y
$ make -j
$ make install

103

GCHP, Release 14.2.0

This will create a GEOS-Chem executable for the TOMAS15 (15 size bins) simulation. To generate an executable
for the TOMAS40 (40 size-bins) simulation, replace -DTOMAS_BINS=15 with -DTOMAS_BINS=40 in the cmake
step above.

22.2 Chemistry

22.2.1 Adaptive Rosenbrock solver with mechanism auto-reduction

In Lin et al. [[Lin et al., 2023]], the authors introduce an adaptive Rosenbrock solver with on-the-fly mechanism
reduction in The Kinetic PreProcessor (KPP) version 3.0.0 and later. While this adaptive solver is available for all
GEOS-Chem simulations that use the fullchem simulation, it is disabled by default.

To activate the adaptive Rosenbrock solver with mechanism auto-reduction, edit the line of geoschem_config.
yml indicated below:

chemistry:
activate: true
... Previous sub-sections omitted
autoreduce_solver:
activate: false # <== true activates the adaptive Rosenbrock solver
use_target_threshold:
activate: true
oh_tuning_factor: 0.00005
no2_tuning_factor: 0.0001

use_absolute_threshold:
scale_by_pressure: true
absolute_threshold: 100.0

keep_halogens_active: false
append_in_internal_timestep: false

Please see the Lin et al. [[Lin et al., 2023]] reference for a detailed explanation of the other adaptive Rosenbrock
solver options.

22.2.2 Alternate chemistry mechanisms

GEOS-Chem is compiled “out-of-the-box” with KPP-generated solver code for the fullchem mechanism. But you
must manually specify the mechanism name at configuration time for the following instances:

Carbon mechanism

Follow these steps to build an executable with the carbon mechanism:

1. Create a run directory for the Carbon simulation

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DMECH=carbon
$ make -j
$ make install

104 Chapter 22. Customize simulations with research options

https://kpp.readthedocs.io/en/stable/tech_info/07_numerical_methods.html#rosenbrock-with-mechanism-auto-reduction
https://kpp.readthedocs.io/en/stable/tech_info/07_numerical_methods.html#rosenbrock-with-mechanism-auto-reduction
https://kpp.readthedocs.io

GCHP, Release 14.2.0

Custom full-chemistry mechanism

We recommend that you use the custom mechanism instead of directly modifying the fullchem mechanism. The
custom mechanism is a copy of fullchem, but the KPP solver code will be generated in the KPP/custom folder
instead of in KPP/fullchem. This lets you keep the fullchem folder untouched.

Follow these steps:

1. Create a run directory for the full-chemistry simulation (whichever configuration you need).

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DMECH=custom
$ make -j
$ make install

Hg mechanism

Follow these steps to build an executable with the Hg (mercury) mechanism:

1. Create a run directory for the Hg simulation.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DMECH=Hg
$ make -j
$ make install

22.2.3 HO2 heterogeneous chemistry reaction probability

You may update the value of 𝛾𝐻𝑂2 (reaction probability for uptake of HO2 in heterogeneous chemistry) used in your
simulations. Edit the line of geoschem_config.yml indicated below:

chemistry:
activate: true
... Preceding sections omitted ...
gamma_HO2: 0.2 # <=== add new value here

22.2.4 TransportTracers

In GEOS-Chem 14.2.0 and later versions, species belonging to the TransportTracers simulation (radionuclides and
passive species) now have their properties defined in the species_database.yml file. For example:

CH3I:
Background_VV: 1.0e-20
Formula: CH3I
FullName: Methyl iodide
Henry_CR: 3.6e+3
Henry_K0: 0.20265
Is_Advected: true
Is_Gas: true

(continues on next page)

22.2. Chemistry 105

GCHP, Release 14.2.0

(continued from previous page)

Is_Photolysis: true
Is_Tracer: true
Snk_Horiz: all
Snk_Mode: efolding
Snk_Period: 5
Snk_Vert: all
Src_Add: true
Src_Mode: HEMCO
MW_g: 141.94

where:

• Is_Tracer: true indicates a TransportTracer species

• Snk_* define species sink properties

• Src_* define species source properties

• Units: specifies the default units for species (added mainly for age of air species at this time which are in
days)

For TransportTracers species that have a source term in HEMCO, there will be corresponding entries in
HEMCO_Config.rc:

--> OCEAN_CH3I : true

... etc ...

#==
CH3I emitted over the oceans at rate of 1 molec/cm2/s
#==
(((OCEAN_CH3I
0 SRC_2D_CH3I 1.0 - - - xy molec/cm2/s CH3I 1000 1 1
)))OCEAN_CH3I

Sources and sinks for TransportTracers are now applied in the new source code module GeosCore/tracer_mod.
F90.

Note: Sources and sinks for radionuclide species (Rn, Pb, Be isotopes) are currently not applied in GeosCore/
tracer_mod.F90 (but may be in the future). Emissions for radionuclide species are computed by the HEMCO
GC-Rn-Pb-Be extension and chemistry is done in GeosCore/RnPbBe_mod.F90.

TransportTracer properties for radionuclide species have been added to species_database.yml but are currently
commented out.

22.3 Diagnostics

22.3.1 GEOS-Chem and HEMCO diagnostics

Please see our Diagnostics reference chapter for an overview of how to archive diagnostics from GEOS-Chem and
HEMCO.

106 Chapter 22. Customize simulations with research options

https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/diagnostics.html

GCHP, Release 14.2.0

22.3.2 RRTMG radiative transfer diagnostics

You can use the RRTMG radiative transfer model to archive radiative forcing fluxes to the GeosRad History diag-
nostic collection. RRTMG is implemented as a compile-time option due to the extra computational overhead that it
incurs.

To activate RRTMG, follow these steps:

1. Create a run directory for the Full Chemistry simulation, with extra option RRTMG.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DRRTMG=y
$ make -j
$ make install

Then also make sure to request the radiative forcing flux diagnostics that you wish to archive in the HISTORY.rc
file.

22.4 Emissions

22.4.1 Offline vs. online emissions

Emission inventories sometimes include dynamic source types and nonlinear scale factors that have functional depen-
dencies on local environmental variables such as wind speed or temperature, which are best calculated online during
execution of the model. HEMCO includes a suite of additional modules (aka HEMCO extensions) that perform online
emissions ccalculations for a variety of sources.

Some types of emissions are highly sensitive to meteorological variables such as wind speed and temperature. Because
the meteorological inputs are regridded from their native resolution to the GEOS-Chem or HEMCO simulation grid,
emissions computed with fine-resolution meteorology can significantly differ from emissions computed with coarse-
resolution meteorology. This can make it difficult to compare the output of GEOS-Chem and HEMCO simulations
that use different horizontal resolutions.

In order to provide more consistency in the computed emissions, we now make available for download offline emis-
sions. These offline emissions are pre-computed with HEMCO standalone simulations using meteorological inputs
at native horizontal resolutions possible. When these emissions are regridded within GEOS-Chem and HEMCO, the
total mass emitted will be conserved regardless of the horizontal resolution of the simulation grid.

You should use offline emissions:

• For all GCHP simulations

• For full-chemistry simulations (except benchmark)

You should use online emissions:

• For benchmark simulations

• If you wish to assess the impact of changing/updating the meteorlogical inputs on emissions.

You may toggle offline emissions on (true) or off (false) in this section of HEMCO_Config.rc:

----- OFFLINE EMISSIONS ---
To use online emissions instead set the offline emissions to 'false' and the
corresponding HEMCO extension to 'on':
OFFLINE_DUST - DustDead or DustGinoux

(continues on next page)

22.4. Emissions 107

https://hemco.readthedocs.io/en/stable/hco-ref-guide/extensions.html

GCHP, Release 14.2.0

(continued from previous page)

OFFLINE_BIOGENICVOC - MEGAN
OFFLINE_SEASALT - SeaSalt
OFFLINE_SOILNOX - SoilNOx
#
NOTE: When switching between offline and online emissions, make sure to also
update ExtNr and Cat in HEMCO_Diagn.rc to properly save out emissions for
any affected species.
#--

--> OFFLINE_DUST : true # 1980-2019
--> OFFLINE_BIOGENICVOC : true # 1980-2020
--> OFFLINE_SEASALT : true # 1980-2019
--> CalcBrSeasalt : true
--> OFFLINE_SOILNOX : true # 1980-2020

As stated in the comments, if you switch between offline and online emissions, you will need to activate the corre-
sponding HEMCO extension:

Table 1: Offline emissions and corresponding HEMCO extensions
Offline base emission Extension # Corresponding HEMCO extension Extension #
OFFLINE_DUST 0 DustDead 105
OFFLINE_BIOGENICVOC 0 MEGAN 108
OFFLINE_SEASALT 0 SeaSalt 107
OFFLINE_SOILNOX 0 SoilNOx 104

Example: Disabling offline dust emissions

1. Change the OFFLINE_DUST setting from true to false in HEMCO_Config.rc:

--> OFFLINE_DUST : false # 1980-2019

2. Change the DustDead extension setting from off to on in HEMCO_Config.rc:

105 DustDead : on DST1/DST2/DST3/DST4

3. Change the extension number for all dust emission diagnostics from 0 (the extension number for base emissions)
to 105 (the extension number for DustDead) in HEMCO_Diagn.rc.

###
Dust emissions
###
EmisDST1_Total DST1 -1 -1 -1 2 kg/m2/s DST1_emission_flux_from_
→˓all_sectors
EmisDST1_Anthro DST1 105 1 -1 2 kg/m2/s DST1_emission_flux_from_
→˓anthropogenic
EmisDST1_Natural DST1 105 3 -1 2 kg/m2/s DST1_emission_flux_from_
→˓natural_sources
EmisDST2_Natural DST2 105 3 -1 2 kg/m2/s DST2_emission_flux_from_
→˓natural_sources
EmisDST3_Natural DST3 105 3 -1 2 kg/m2/s DST3_emission_flux_from_
→˓natural_sources
EmisDST4_Natural DST4 105 3 -1 2 kg/m2/s DST4_emission_flux_from_
→˓natural_sources

To enable online emissions again, do the inverse of the steps listed above.

108 Chapter 22. Customize simulations with research options

GCHP, Release 14.2.0

22.4.2 Sea salt debromination

In Zhu et al. [2018], the authors present a mechanistic description of sea salt aerosol debromination. This option was
originally enabled by in GEOS-Chem 13.4.0, but was then changed to be an option (disabled by default) due to the
impact it had on ozone concentrations.

Further chemistry updates to GEOS-Chem have allowed us to re-activate sea-salt debromination as the default option
in GEOS-Chem 14.2.0 and later versions. If you wish to disable sea salt debromination in your simulations, edit the
line in HEMCO_Config.rc indicated below.

107 SeaSalt : on SALA/SALC/SALACL/SALCCL/SALAAL/SALCAL/BrSALA/
→˓BrSALC/MOPO/MOPI

... Preceding options omitted ...
--> Model sea salt Br- : true # <== false deactivates sea salt

→˓debromination
--> Br- mass ratio : 2.11e-3

22.5 Photolysis

22.5.1 Particulate nitrate photolysis

A study by Shah et al. [2023] showed that particulate nitrate photolysis increases GEOS-Chem modeled ozone con-
centrations by up to 5 ppbv in the free troposphere in northern extratropical regions. This helps to correct a low bias
with respect to observations.

Particulate nitrate photolysis is turned on by default in GEOS-Chem 14.2.0 and later versions. You may disable this
option by editing the line in geoschem_config.yml indicated below:

photolysis:
activate: true
.. preceding sub-sections omitted ...
photolyze_nitrate_aerosol:
activate: true # <=== false deactivates nitrate photolysis
NITs_Jscale_JHNO3: 100.0
NIT_Jscale_JHNO2: 100.0
percent_channel_A_HONO: 66.667
percent_channel_B_NO2: 33.333

You can also edit the other nitrate photolysis parameters by changing the appropriate lines above. See the Shah et al
[2023] reference for more information.

22.6 Wet deposition

22.6.1 Luo et al 2020 wetdep parameterization

In Luo et al. [[Luo et al., 2020]], the authors introduced an updated wet deposition parameterization, which is now
incorporated into GEOS-Chem as a compile-time option. Follow these steps to activate the Luo et al 2020 wetdep
scheme in your GEOS-Chem simulations.

1. Create a run directory for the type of simulation that you wish to use.

• CAVEAT: Make sure your simulation uses at least one species that can be wet-scavenged.

2. Navigate to the build folder within the run directory.

22.5. Photolysis 109

https://acp.copernicus.org/articles/19/6497/2019/
https://doi.org/10.5194/acp-23-1227-2023

GCHP, Release 14.2.0

3. Then type the following:

$ cmake .. -DLUO_WETDEP=y
$ make -j
$ make install

110 Chapter 22. Customize simulations with research options

CHAPTER

TWENTYTHREE

UNDERSTAND WHAT ERROR MESSAGES MEAN

In this Guide we provide information about the different types of errors that your GEOS-Chem simulation might
encounter.

Important: Know the difference between warnings and errors.

Warnings are non-fatal informational messages. Usually you do not have to take any action when encountering a
warning. Nevertheless, you should always try to investigate why the warning was generated in the first place.

Errors are fatal and will halt GEOS-Chem compilation or execution. Looking at the error message will give you some
clues as to why the error occurred.

We strongly encourage that you try to debug the issue using the info both in this Guide and in our Debug GEOS-Chem
and HEMCO errors Guide. Please see our Support Guidelines for more information.

23.1 Where does error output get printed?

GEOS-Chem Classic, GCHP, and HEMCO, like all Linux-based programs, send output to two streams: stdout and
stderr.

Most output will go to the stdout stream, which takes I/O from the Fortran WRITE and PRINT commands. If you run
e.g. GEOS-Chem Classic by just typing the executable name at the Unix prompt:

$./gcclassic

then the stdout stream will be printed to the terminal window. You can also redirect the stdout stream to a log file with
the redirect command:

$./gcclassic > GC.log 2>&1

The 2>&1 tells the bash script to append the stderr stream (noted by 2) to the stdout stream (noted by 1). This will
make sure that any error output also shows up in the log file.

You can also use the Linux tee command, which will send output both to a log file as well as to the terminal window:

$./gcclassic | tee GC.log 2>&1

Note: Please note the following:

1. We have combined HEMCO and GEOS-Chem informational printouts as of GEOS-Chem 14.2.0 and HEMCO
3.7.0. In previous versions, HEMCO informational printouts would have been sent to a separate HEMCO.log
file.

111

https://geos-chem.readthedocs.io/en/latest/help-and-reference/SUPPORT.html
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io

GCHP, Release 14.2.0

2. We have disabled most GEOS-Chem and HEMCO informational printouts by default, starting in GEOS-Chem
14.2.0 and HEMCO 3.7.0. These printouts may be restored (e.g. for debugging) by enabling verbose output in
both geoschem_config.yml and HEMCO_Config.rc.

3. GCHP sends output to several log files as well as to the stdout and stderr streams. Please see gchp.readthedocs.io
for more information.

23.2 Compile-time errors

In this section we discuss some compilation warnings that you may encounter when building GEOS-Chem.

23.2.1 Cannot open include file netcdf.inc

error #5102: Cannot open include file 'netcdf.inc'

Problem: The netcdf-fortran library cannot be found.

Solution: Make sure that all software dependencies have been installed and loaded into your Linux environment.

23.2.2 KPP error: Cannot find -lfl

/usr/bin/ld: cannot find -lfl
error: ld returned exit 1 status

Problem:: The Kinetic PreProcessor (KPP) cannot find the flex library, which is one of its dependencies.

Solution: Make sure that all software dependencies have been installed and loaded into your Linux environment.

23.2.3 GNU Fortran internal compiler error

f951: internal compiler error: in ___ at ___

Problem: Compilation halted due to a compiler issue. These types of errors can indicate:

1. An undiagnosed bug in the compiler itself.

2. The inability of the compiler to parse source code adhering to the most recent Fortran language standard.

Solution: Try switching to a newer compiler:

• For GCHP: Use GNU Compiler Collection 9.3 and later.

• For GEOS-Chem Classic and HEMCO: Use GNU Compiler Collection 7.0 and later

112 Chapter 23. Understand what error messages mean

https://gchp.readthedocs.io
https://kpp.readthedocs.io

GCHP, Release 14.2.0

23.3 Run-time errors

23.3.1 Floating invalid or floating-point exception error

forrtl: error (65): floating invalid # Error message from Intel Fortran Compiler

Floating point exception (core dumped) # Error message from GNU Fortran compiler

Problem: An illegal floating-point math operation has occurred. This error can be generated if one of the following
conditions has been encountered:

1. Division by zero

2. Underflow or overflow

3. Square root of a negative number

4. Logarithm of a negative number

5. Negative or Positive Infinity

6. Undefined value(s) used in an equation

Solution: Re-configure GEOS-Chem (or the HEMCO standalone) with the -DCMAKE_RELEASE_TYPE=Debug
Cmake option. This will build in additional error checking that should alert you to where the error is occurring. Once
you find the location of the error, you can take the appropriate steps, such as making sure that the denominator of an
expression never goes to zero, etc.

23.3.2 Forced exit from Rosenbrock

Forced exit from Rosenbrock due to the following error:
--> Step size too small: T + 10*H = T or H < Roundoff
T= 3044.21151383269 and H= 1.281206877135470E-012
INTEGRATE RETURNED ERROR AT: 40 68 1

Forced exit from Rosenbrock due to the following error:
--> Step size too small: T + 10*H = T or H < Roundoff
T= 3044.21151383269 and H= 1.281206877135470E-012
INTEGRATE FAILED TWICE

###
KPP DEBUG OUTPUT
Species concentrations at problem box 40 68 1
###
... printout of species concentrations ...

###
KPP DEBUG OUTPUT
Species concentrations at problem box 40 68 1
###
... printout of reaction rates ...

Problem: The KPP Rosenbrock integrator could not converge to a solution at a particular grid box. This can happen
when:

1. The absolute (ATOL) and/or relative (RTOL) error tolerances need to be refined.

2. A particular species has numerically underflowed or overflowed.

23.3. Run-time errors 113

GCHP, Release 14.2.0

3. A division by zero occurred in the reaction rate computations.

4. A species has been set to a very low value in another operation (e.g. wet scavenging), thus causing the non-
convergence.

5. The initial conditions of the simulation may be non-physical.

6. A data file (meteorology or emissions) may be corrupted.

If the non-convergence only happens once, then GEOS-Chem will revert to prior concentrations and reset the saved
KPP internal timestep (Hnew) to zero before calling the Rosenbrock integrator again. In many instances, this is
sufficient for the chemistry to converge to a soluiton.

In the case that the Rosenbrock integrator fails to converge to a solution twice in a row, all of the concentrations and
reaction rates at the grid box will be printed to stdout and the simulation will terminate.

Solution: Look at the error printout. You will likely notice species concentrations or reaction rates that are extremely
high or low compared to the others. This will give you a clue as to where in GEOS-Chem the error may have occurred.

Try performing some short test simulations, turning each operation (e.g. transport, PBL mixing, convection, etc).
off one at a time. This should isolate the location of the error. Make sure to turn on verbose output in both
geoschem_config.yml and HEMCO_Config.rc; this will send additional printout to the stdout stream. The
clue to finding the error may become obvious by looking at this output.

Check your restart file to make sure that the initial concentrations make sense. For certain simulations, using initial
conditions from a simulation that has been sufficiently spun-up makes a difference.

Use a netCDF file viewer like ncview to open the meteorology files on the day that the error occurred. If a file does
not open properly, it is probably corrupted. If you suspect that the file may have been corrupted during download,
then download the file again from its original source. If this still does not fix the error, then the file may have been
corrupted at its source. Please open a new Github issue to alert the GEOS-Chem Support Team.

More about KPP error tolerances

The error tolerances are set in the following locations:

1. fullchem mechanism: In routine Do_FlexChem (located in in GeosCore/fullchem_mod.F90).

2. Hg mechanism: In routine ChemMercury (located in GeosCore/mercury_mod.F90).

For example, in the fullchem mechanism, ATOL and RTOL are defined as:

!%%%%% CONVERGENCE CRITERIA %%%%%

! Absolute tolerance
ATOL = 1e-2_dp

! Relative tolerance
! Changed to 0.5e-3 to avoid integrate errors by halogen chemistry
! -- Becky Alexander & Bob Yantosca (24 Jan 2023)
RTOL = 0.5e-3_dp

Convergence errors can occur because the system arrives to a state too far from the truth to be able to converge. By
tightening (i.e. decreasing) the tolerances, you ensure that the system stays closer to the truth at every time step. Then,
the problematic time steps will start the chemistry with a system closer to the true state, enabling the chemistry to
converge.

CAVEAT: If the first time step of chemistry cannot converge, tightening the tolerances wouldn’t work but loosening
the tolerance would. So you might have to experiment a little bit in order to find the proper settings for ATOL and
RTOL for your specific mechanism.

114 Chapter 23. Understand what error messages mean

GCHP, Release 14.2.0

23.3.3 HEMCO Error: Cannot find field

HEMCO Error: Cannot find field ___. Please check the name in the config file.

Problem: A GEOS-Chem Classic or HEMCO standalone simulation halts because HEMCO cannot find a certain
input field.

Solution: Most of the time, this error indicates that a species is missing from the GEOS-Chem restart file. By default,
the GEOS-Chem restart file (entry SPC_ in HEMCO_Config.rc) uses time cycle flag EFYO. This setting tells HEMCO
to halt if a species does not have an initial condition field contained in the GEOS-Chem restart file. Changing this time
cycle flag to CYS will allow the simulation to proceed. In this case, species will be given a default background initial
concentration, and the simulation will be allowed to proceed.

23.3.4 HEMCO Error: Cannot find file for current simulation time

HEMCO ERROR: Cannot find file for current simulation time:
./Restarts/GEOSChem.Restart.17120701_0000z.nc4 - Cannot get field SPC_NO.
Please check file name and time (incl. time range flag) in the config. file

Problem: HEMCO tried to read data from a file but could not find the time slice requested in HEMCO_Config.rc.

Solution: Make sure that the file is at the path specified in HEMCO_Config.rc. HEMCO will try to look back in
time starting with the current year and going all the way back to the year 1712 or 1713. So if you see 1712 or 1713 in
the error message, that is a tip-off that the file is missing.

23.3.5 HEMCO Run Error

===
GEOS-CHEM ERROR: HCO_RUN

HEMCO ERROR: Please check the HEMCO log file for error messages!

STOP at HCOI_GC_RUN (hcoi_gc_main_mod.F90)
===

Problem: A GEOS-Chem simulation stopped in the HCOI_GC_RUN routine with an error message similar to that
shown above.

Solution: Look at the output that was written to the stdout and stderr streams. Error messages containing HCO
originate in HEMCO.

23.3.6 HEMCO time stamps may be wrong

HEMCO WARNING: ncdf reference year is prior to 1901 - time stamps may be wrong!
--> LOCATION: GET_TIMEIDX (hco_read_std_mod.F90)

Problem: HEMCO reads the files but gives zero emissions and shows the error listed above.

Solution: Do the following:

1. Reset the reference datetime in the netCDF file so that it is after 1901.

2. Make sure that the time:calendar string is either standard or gregorian. GEOS-Chem Classic,
GCHP, and HEMCO can only read data placed on calendars with leap years.

23.3. Run-time errors 115

https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/restart-files-gc.html/restart-files-gc.html
https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/hemco-config.html

GCHP, Release 14.2.0

GCST member Lizzie Lundgren writes:

This HEMCO error occurs if the reference time for the netCDF file time dimension is prior to 1901. If
you do ncdump -c filename you will be able to see the metadata for the time dimension as well as
the time variable values. The time units should include the reference date.

You can get around this issue by changing the reference time within the file. You can do this with cdo
(Climate Data Operators) using the setreftime command.

Here is a bash script example by GCST member Melissa Sulprizio that updates the calendar and reference
time for all files ending in *.nc within a directory. This script was made for a user who ran into this
issue. into the same issue. In that case the first file was for Jan 1, 1950, so that was made the new reference
time. I would recommend doing the same for your dataset so that the first time variable value would be 0.
This script also compresses the file which we recommend doing.

#!/bin/bash

for file in *nc; do
echo "Processing $file"

Make sure te calendar is "standard" and not e.g. 360 days
cdo setcalendar,standard $file tmp.nc
mv tmp.nc $file

Set file reference time to 1950-01-01 at 0z
cdo setreftime,1950-01-01,0 $file tmp.nc
mv tmp.nc $file

Compress the file
nccopy -d1 -c "time/1" $file tmp.nc
mv tmp.nc $file

done

After you update the file you can then again do ncdump -c filename to check the time dimension.
For the case above it looks like this after processing.

double time(time) ;
time:standard_name = "time" ;
time:long_name = "time" ;
time:bounds = "time_bnds" ;
time:units = "days since 1950-01-01 00:00:00" ;
time:calendar = "standard" ;
. . .

time = 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 396, 424,
455, 485, 516, 546, 577, 608, 638, 669, 699, 730, 761, 790, 821, 851,``
882, 912, 943, 974, 1004, 1035, 1065, 1096, 1127, 1155, 1186, 1216,

→˓1247 . . .

116 Chapter 23. Understand what error messages mean

https://github.com/lizziel
https://github.com/msulprizio

GCHP, Release 14.2.0

23.3.7 Negative tracer found in WETDEP

WETDEP: ERROR at 40 67 1 for species 2 in area WASHOUT: at surface
LS : T
PDOWN : 0.0000000000000000
QQ : 0.0000000000000000
ALPHA : 0.0000000000000000
ALPHA2 : 0.0000000000000000
RAINFRAC : 0.0000000000000000
WASHFRAC : 0.0000000000000000
MASS_WASH : 0.0000000000000000
MASS_NOWASH : 0.0000000000000000
WETLOSS : NaN
GAINED : 0.0000000000000000
LOST : 0.0000000000000000
DSpc(NW,:) : NaN 6.0358243778561746E-013 6.
→˓5871997362336500E-013 7.2710915872550685E-013 8.0185772698102585E-013 8.
→˓7883682997147595E-013 9.6396466805517407E-013 1.0574719517340253E-012 1.
→˓1617302070198606E-012 1.2976219851862141E-012 1.4347568254382824E-012 1.
→˓5772212240871896E-012 1.7071657565802178E-012 1.8443377617027378E-012 1.
→˓9982208320328261E-012 2.1567932874822908E-012 2.2591568422224307E-012 2.
→˓2208301198704935E-012 1.8475974519883714E-012 1.7716069173018996E-013 1.
→˓7714395985520433E-013 1.7633649101242403E-013 1.6668529114369137E-013 1.
→˓3548045738669223E-013 5.1061710020314286E-014 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000
Spc(I,J,:N) : NaN 3.5108056785061143E-009 3.
→˓8363969256742307E-009 3.6615166033026556E-009 3.6780394914242783E-009 4.
→˓1462343168230006E-009 4.7319942271993657E-009 5.1961472823088513E-009 5.
→˓4030830279477525E-009 5.5736845790195336E-009 5.7139596145766606E-009 5.
→˓8629212873139874E-009 7.9742789235773213E-009 1.0334311421916619E-008 1.
→˓0816150360971255E-008 1.1168715310744298E-008 1.1534959217017146E-008 1.
→˓1809950282570185E-008 1.7969626885629474E-008 1.7430760762446019E-008 1.
→˓7477810715818748E-008 1.7967321756900857E-008 1.8683742574601477E-008 1.
→˓9309929368816065E-008 2.0262386892450682E-008 2.0489969814921647E-008 1.
→˓9961590106306151E-008 2.2859284477873924E-008 1.3161046290246557E-008 6.
→˓5857053651000387E-009 2.7535806161296159E-009 1.2708780077337107E-009 3.
→˓6557775667039418E-010 6.1984105316417057E-011 2.6665694620973736E-011 8.
→˓7599157145440813E-012 4.8009375158768866E-012 1.0086435318729046E-012 1.
→˓3493529625353547E-013 1.6403790023674963E-014 2.7417226109948757E-015 4.
→˓2031825835582592E-014 2.3778709382809943E-013 8.3223532851684382E-013 4.
→˓5695049346098890E-012 6.9911523125704209E-012 2.5076669266356582E-012
===
===
GEOS-Chem ERROR: Error encountered in wet deposition!
-> at SAFETY (in module GeosCore/wetscav_mod.F90)

===

===
GEOS-Chem ERROR: Error encountered in "Safety"!
-> at Do_Washout_at_Sfc (in module GeosCore/wetscav_mod.F90)

===

(continues on next page)

23.3. Run-time errors 117

GCHP, Release 14.2.0

(continued from previous page)

===
GEOS-Chem ERROR:
-> at WetDep (in module GeosCore/wetscav_mod.F90)

===

===
GEOS-Chem ERROR: Error encountered in "Wetdep"!
-> at Do_WetDep (in module GeosCore/wetscav_mod.F90)

===

===
GEOS-CHEM ERROR: Error encountered in "Do_WetDep"!
STOP at -> at GEOS-Chem (in GeosCore/main.F90)
===

- CLEANUP: deallocating arrays now...

Problem: A GEOS-Chem simulation has encountered either negative or NaN (not-a-number) concentrations in the
wet deposition module. This can indicate the following:

1. The wet deposition routines have removed too much soluble species from within a grid box.

2. Another operation (e.g. transport, convection, etc.) has removed too much soluble species from within a grid
box.

3. A corrupted or incorrect meteorological input has caused too much rainout or washout to occur within a grid
box (which leads to conditions 1 and/or 2 above).

4. An array-out-of-bounds error has corrupted a variable that is used in wet depoosition.

5. For nested-grid simulations, the transport timestep may be too large, thus resulting in grid boxes with zero or
negative concentrations.

Solution: Re-configure GEOS-Chem and/or HEMCO with the -DCMAKE_RELEASE_TYPE=Debug CMake option.
This adds in additional error checks that may help you find where the error occurs.

Also try adding some PRINT* statements before and after the call to DO_WETDEP to check the concentrations enter-
ing and leaving the wetdep module. That might give you an idea of where the concetnrations are going negative.

23.3.8 Permission denied error

geoschem.run: Permission denied

Problem: The script geoschem.run is not executable.

Solution: Change the permission of the script with:

$ chmod 755 geoschem.run

118 Chapter 23. Understand what error messages mean

GCHP, Release 14.2.0

23.4 File I/O errors

23.4.1 List-directed I/O syntax error

Error message from GNU Fortran
At line NNNN of file filename.F90
Fortran runtime error: Bad real number|integer number|character in item X of list
→˓input

Error message from Intel Fortran
forrtl: severe (59): list-directed I/O syntax error, unit -5, file Internal List-
→˓Directed Read

Problem: This error indicates that the wrong type of data was read from a text file. This can happen when:

1. Numeric input is expected but character input was read from disk (or vice-versa);

2. A READ statement in your code has been omitted or deleted.

Solution: Check configuration files (geoschem_config.yml, HEMCO_Config.rc, HEMCO_Diagn.rc, etc.)
for syntax errors and omissions that could be causing this error.

23.4.2 Nf_Def_Var: can not define variable

!!

Nf_Def_var: can not define variable: ____

!!

Code stopped from DO_ERR_OUT (in module NcdfUtil/m_do_err_out.F90)

This is an error that was encountered in one of the netCDF I/O modules,
which indicates an error in writing to or reading from a netCDF file!

!!

Problem: GEOS-Chem or HEMCO could not write a variable to a netCDF file. This error may be caused by:

1. The netCDF file is write-protected and cannot be overwritten.

2. The path to the netCDF file is incorrect (e.g. directory does not exist).

3. The netCDF file already contains a variable with the same name.

Solution: Try the following:

1. If GEOS-Chem or HEMCO will be overwriting any existing netCDF files (which can often happen during
testing & development), make sure that the file and containing directory are not write-protected.

2. Make sure that the path where you intend to write the netCDF file exists.

3. Check your HISTORY.rc and HEMCO_Diagn.rc diagnostic configuration files to make sure that you are
not writing more than one diagnostic variable with the same name.

23.4. File I/O errors 119

GCHP, Release 14.2.0

23.4.3 NetCDF: HDF Error

NetCDF: HDF error

Problem: The netCDF library routines in GEOS-Chem or HEMCO cannot read a netCDF file. The error is occurring
in the HDF5 library (upon which netCDF depends). This may indicate a corrupted or incomplete netCDF file.

Solution: Try re-downloading the file from the WashU data portal. Downloading a fresh copy of the file is often
sufficient to fix this type of issue. If the error persists, please open a new GitHub issue to alert the GEOS-Chem
Support team, as the corruption may have occured at the original source of te data.

23.5 Segmentation faults and similar errors

SIGSEGV, segmentation fault occurred

Problem: GEOS-Chem or HEMCO tried to access an invalid memory location.

Solution: See the sections below for ways to debug segmentation fault errors.

23.5.1 Array-out-of-bounds error

Subscript #N of the array THISARRAY has value X which is less than the lower bound of
→˓Y

or

Subscript #N of the array THISARRAY has value A which is greater than the upper bound
→˓of B

Problem: An array index variable refers to an element that lies outside of the array boundaries.

Solution: Reconfigure GEOS-Chem with the following options:

$ cd /path/to/build # Your GEOS-Chem or HEMCO build directory
$ cmake . -DCMAKE_BUILD_TYPE=Debug

This will enable several debugging options, including checking for array operations indices that going out of bounds.
You wil get an error message similar to those shown above.

Use the grep command to search for all instances of the array (in this example, THISARRAY) in each source code
folder:

grep -i THISARRAY *.F90 # -i means ignore uppercase/lowercase distinction

This should let you quickly locate the issue. Depending on the compiler that is used, you might also get a routine
name and line number from the error output.

120 Chapter 23. Understand what error messages mean

https://geoschemdata.wustl.edu
http://stackoverflow.com/questions/2346806/what-is-segmentation-fault

GCHP, Release 14.2.0

23.5.2 Segmentation fault encountered after TPCORE initialization

NASA-GSFC Tracer Transport Module successfully initialized

Problem: A GEOS-Chem simulation dies right after you see this text.

Note: Starting in GEOS-Chem Classic 14.1.0, the text above will only be printed if you have activated verbose output
in the geoschem_config.yml configuration file.

Solution: Increase the amount of stack memory available to GEOS-Chem and HEMCO. Please follow this link for
detailed instructions.

23.5.3 Invalid memory access

severe (174): SIGSEGV, segmentation fault occurred
This message indicates that the program attempted an invalid memory reference.
Check the program for possible errors.

Problem: GEOS-Chem or HEMCO code tried to read data from an invalid memory location. This can happen when
data is being read from a file into an array, but the array is too small to hold all the data.

Solution: Use a debugger (like gdb) to try to diagnose the situation. Also try increasing the dimensions of the array
that you suspect might be too small.

23.5.4 Stack overflow

severe (174): SIGSEGV, possible program stack overflow occurred
Program requirements exceed current stacksize resource limit.

Problem: GEOS-Chem and/or HEMCO is using more stack memory than is currently available to the system. Stack
memory is a reserved portion of the memory structure where short-lived variables are stored, such as:

1. Variables that are local to a given subroutine

2. Variables that are NOT globally saved

3. Variables that are NOT declared as an ALLOCATABLE array

4. Variables that are NOT declared as a POINTER variable or array

5. Variables that are included in an !$OMP PRIVATE or !$OMP THREADPRIVATE

Solution: Max out the amount of stack memory that is available to GEOS-Chem and HEMCO. See this section for
instructions.

23.5. Segmentation faults and similar errors 121

https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/login-env-parallel.html
http://geos-chem.readthedocs.io/en/latest/getting-started/login-env-parallel.html

GCHP, Release 14.2.0

23.6 Less commmon errors

The errors listed below, which occur infrequently, are related to invalid memory operations. These can especially
occur with POINTER-based variables.

23.6.1 Bus Error

Problem: GEOS-Chem or HEMCO is trying to reference memory that cannot possibly be there. The website Stack-
Overflow.com has a definition of bus error and how it differs from a segmentation fault.

Solution: A bus error may occur when you call a subroutine with too many arguments. Check subroutine definitions
and subroutine calls to make sure the correct number of arguments are passed.

23.6.2 Double free or corruption

*** glibc detected *** PROGRAM_NAME: double free or corruption (out): ____ ***

Problem: The following error is not common, but can occur under some circumstances. Usually this means one of
the following has occurred:

1. You are deallocating the same variable more than once.

2. You are deallocating a variable that wasn’t allocated, or that has already been deallocated.

Please see this link for more details.

Solution: Try setting all deleted pointers to NULL().

You can also use a debugger like gdb, which will show you a backtrace from your crash. This will contain informa-
tion about in which routine and line number the code crashed, and what other routines were called before the crash
happened.

Remember these three basic rules when working with POINTER-based variables:

1. Set pointer to NULL after free.

2. Check for NULL before freeing.

3. Initialize pointer to NULL in the start.

Using these rules helps to prevent this type of error.

Also note, you may see this error when a software library required by GEOS-Chem and/or HEMCO is not (e.g.
netcdf or netcdf-fortran has not been installed. GEOS-Chem and/or HEMCO may be making calls to the
missing library, which results in the error. If this is the case, the solution would be to install all required libraries.

23.6.3 Dwarf subprogram entry error

Dwarf subprogram entry L_ROUTINE-NAME__LINE-NUMBER__par_loop2_2_576 has high_pc < low_
→˓pc.
This warning will not be repeated for other occurrences.

Problem: GEOS-Chem or HEMCO code tried to use a POINTER-based variable that is unassociated (i.e. not
pointing to any other variable or memory) from within an OpenMP parallel loop.

This error can happen when a POINTER-based variable is set to NULL() where it is declared:

122 Chapter 23. Understand what error messages mean

http://stackoverflow.com/questions/212466/what-is-a-bus-errornice
http://stackoverflow.com/questions/2902064/how-to-track-down-a-double-free-or-corruption-error-in-c-with-gdb

GCHP, Release 14.2.0

TYPE(Species), POINTER :: ThisSpc => NULL()

The above declaration causes use pointer variable ThisSpc to be implicitly declared with the SAVE attribute. This
causes a segmentation fault, because all pointers used within an OpenMP parallel region must be associated and
nullified on the same thread.

Solution: Make sure that any POINTER-based variables (such as ThisSpc in this example) point to their target and
are nullified within the same OpenMP parallel loop.

TYPE(Species), POINTER :: ThisSpc ! Do not set to NULL() here!!!

... etc ...

!$OMP PARALLEL DO(
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(I, J, L, N, ThisSpc, ...)
DO N = 1, nSpecies
DO L = 1, NZ
DO J = 1, NY
DO I = 1, NX

... etc ...

! Point to species database entry
ThisSpc => State_Chm%Species(N)%Info

... etc ...

! Free pointer at end of loop
ThisSpc => NULL()

ENDDO
ENDDO
ENDDO
ENDDO

Note that you must also add POINTER-based variables (such as ThisSpc) to the !$OMP PRIVATE clause for the
parallel loop.

For more information about this type of error, please see this article.

23.6.4 Free: invalid size

Error in PROGRAM_NAME free(): invalid size: 0x00000000 0662e090

Problem: This error is not common. It can happen when:

1. You are trying to free a pointer that wasn’t allocated.

2. You are trying to delete an object that wasn’t created.

3. You may be trying to nullify or deallocate an object more than once.

4. You may be overflowing a buffer.

5. You may be writing to memory that you shouldn’t be writing to.

Solution: Any number of programming errors can cause this problem. You need to use a debugger (such as gdb),
get a backtrace, and see what your program is doing when the error occurs. If that fails and you determine you have

23.6. Less commmon errors 123

http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html#4

GCHP, Release 14.2.0

corrupted the memory at some previous point in time, you may be in for some painful debugging (it may not be too
painful if the project is small enough that you can tackle it piece by piece).

See this link for more information.

23.6.5 Munmap_chunk: invalid pointer

** glibc detected *** PROGRAM_NAME: munmap_chunk(): invalid pointer:
→˓0x00000000059aac30 ***

Problem: This is not a common error, but can happen if you deallocate or nullify a POINTER-based variable that has
already been deallocated or modified.

Solution: Use a debugger (like gdb) to see where in GEOS-Chem or HEMCO the error occurs. You will likely have
to remove a duplicate DEALLOCATE or => NULL() statement. See this link for more information.

23.6.6 Out of memory asking for NNNNN

Fatal compilation error: Out of memory asking for 36864.

Problem: This error may be caused by the datasize limit not being maxed out in your Linux login environment.
See this link for more information.

Solution: Use this command to check the status of the datasize limit:

$ ulimit -d
unlimited

If the result of this command is not unlimited, then set it to unlimited with this command:

$ ulimit -d unlimited

Note: The two most important limits for GEOS-Chem and HEMCO are datasize and stacksize These should
both be set to unlimited.

124 Chapter 23. Understand what error messages mean

http://stackoverflow.com/question/error-free-invalid-next-size-fast
http://stackoverflow.com/questions/6199729/how-to-solve-munmap-chunk-invalid-pointer-error-in-c
http://software.intel.com/en-us/forums/topic/268149

CHAPTER

TWENTYFOUR

DEBUG GEOS-CHEM AND HEMCO ERRORS

If your GEOS-Chem or HEMCO simulation dies unexpectedly with an error or takes much longer to execute than it
should, the most important thing is to try to isolate the source of the error or bottleneck right away. Below are some
debugging tips that you can use.

24.1 Check if a solution has been posted to Github

We have migrated support requests from the GEOS-Chem wiki to Github issues. A quick search of Github issues
(both open and closed) might reveal the answer to your question or provide a solution to your problem.

You should also feel free to open a new issue at one of these Github links:

• GEOS-Chem Classic new issues page

• GCHP new issues page

• HEMCO new issues page

If you are new to Github, we recommend viewing our Github tutorial videos at our GEOS-Chem Youtube site.

24.2 Check if your computational environment is configured properly

Many GEOS-Chem and HEMCO errors occur due to improper configuration settings (i.e. missing libraries, incorrectly-
specified environment variables, etc.) in your computational environment. Take a moment and refer back to these
manual pages (on ReadTheDocs) for information on configuring your environment:

• GEOS-Chem Classic manual

• GCHP manual

• HEMCO manual

24.3 Check any code modifications that you have added

If you have made modifications to a “fresh out-of-the-box” GEOS-Chem or HEMCO version, look over your code edits
to search for sources of potential error.

You can also use Git to revert to the last stable version, which is always in the main branch.

125

https://wiki.geos-chem.org
https://github.com/geoschem/geos-chem/issues/new/choose/
https://github.com/geoschem/GCHP/issues/new/choose
https://github.com/geoschem/HEMCO/issues/new/choose
https://youtube.com/c/geoschem
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io

GCHP, Release 14.2.0

24.4 Check if your runs exceeded time or memory limits

If you are running GEOS-Chem or HEMCO on a shared computer system, you will probably have to use a job scheduler
(such as SLURM) to submit your jobs to a computational queue. You should be aware of the run time and memory
limits for each of the queues on your system.

If your job uses more memory or run time than the computational queue allows, it can be cancelled by the scheduler.
You will usually get an error message printed out to the stderr stream, and maybe also an email stating that the run
was terminated. Be sure to check all of the log files created by your jobs for such error messages.

To solve this issue, try submitting your GEOS-Chem or HEMCO simulations to a queue with larger run-time and
memory limits. You can also try splitting up your long simulations into several smaller stages (e.g. monthly) that take
less time to run to completion.

24.5 Send debug printout to the log files

If your GEOS-Chem simulation stopped with an error, but you cannot tell where, turn on the the debug_printout
option. This is found in the Simulation Settings section of geoschem_config.yml:

#==
Simulation settings
#==
simulation:

name: fullchem
start_date: [20190701, 000000]
end_date: [20190801, 000000]
root_data_dir: /path/to/ExtData
met_field: MERRA2
species_database_file: ./species_database.yml
debug_printout: false # <---- set this to true
use_gcclassic_timers: false

This will send additional output to the GEOS-Chem log file, which may help you to determine where the simulation
stopped.

If your HEMCO simulation stopped with an error, turn on debug printout by editing the Verbose and Warnings
settings at the top of the HEMCO_Config.rc configuration file:

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/ExtData/HEMCO
METDIR: MERRA2
GCAP2SCENARIO: none
GCAP2VERTRES: none
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: ./OutputDir/HEMCO_diagnostics
DiagnFreq: Monthly
Wildcard: *
Separator: /
Unit tolerance: 1
Negative values: 0
Only unitless scale factors: false

(continues on next page)

126 Chapter 24. Debug GEOS-Chem and HEMCO errors

GCHP, Release 14.2.0

(continued from previous page)

Verbose: 0 # <---- set this to 3
Warnings: 1 # <---- set this to 3

Both Verbose and Warnings settings can have values from 0 to 3. The higher the number, the more information
will be printed out to the HEMCO.log file. A value of 0 disables debug printout.

Having this extra debug printout in your log file output may provide insight as to where your simulation is halting.

24.6 Look at the traceback output

An error traceback will be printed out whenever a GEOS-Chem or HEMCO simulation halts with an error. This is a
list of routines that were called when the error occurred.

An sample error traceback is shown here:

forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source
gcclassic 0000000000C82023 Unknown Unknown Unknown
libpthread-2.17.s 00002AACE8015630 Unknown Unknown Unknown
gcclassic 000000000095935E error_mod_mp_erro 437 error_mod.F90
gcclassic 000000000040ABB7 MAIN__ 422 main.F90
gcclassic 0000000000406B92 Unknown Unknown Unknown
libc-2.17.so 00002AACE8244555 __libc_start_main Unknown Unknown
gcclassic 0000000000406AA9 Unknown Unknown Unknown

The top line with a valid routine name and line number printed is the routine that exited with an error (error_mod.
F90, line 437). You might also have to look at the other listed files as well to get some more information about the
error (e.g. main.F90, line 422).

24.7 Identify whether the error happens consistently

If your GEOS-Chem or HEMCO error always happens at the same model date and time, this could indicate corrupted
meteorology or emissions input data files. In this case, you may be able to fix the issue simply by re-downloading the
files to your disk space.

If the error happened only once, it could be caused by a network problem or other such transient condition.

24.8 Isolate the error to a particular operation

If you are not sure where a GEOS-Chem error is occurring, turn off operations (such as transport, chemistry, dry
deposition, etc.) one at a time in the geoschem_config.yml configuration file, and rerun your simulation.

Similarly, if you are debugging a HEMCO error, turn off different emissions inventories and extensions one at a time in
the HEMCO_Config.rc file, and rerun your simulation.

Repeating this process should eventually lead you to the source of the error.

24.6. Look at the traceback output 127

GCHP, Release 14.2.0

24.9 Compile with debugging options

You can compile GEOS-Chem or HEMCO in debug mode. This will activate several additional error run-time error
checks (such as looking for assignments that go outside of array bounds or floating point math errors) that can give
you more insight as to where your simulation is dying.

Configure your code for debug mode with the -DCMAKE_RELEASE_TYPE=Debug option. From your run directory,
type these commands:

cd build
cmake ../CodeDir -DCMAKE_RELEASE_TYPE=Debug -DRUNDIR=..
make -j
make -j install
cd ..

Attention: Compiling in debug mode will add a significant amount of computational overhead to your simula-
tion. Therefore, we recommend to activate these additional error checks only in short simulations and not in long
production runs.

24.10 Use a debugger

You can save yourself a lot of time and hassle by using a debugger such as gdb (the GNU debugger). With a debugger
you can:

• Examine data when a program stops

• Navigate the stack when a program stops

• Set break points

To run GEOS-Chem or HEMCO in the gdb debugger, you should first compile in debug mode. This will turn on the -g
compiler flag (which tells the compiler to generate symbolic information for debugging) and the -O0 compiler flag
(which shuts off all optimizations. Once the executable has been created, type one of the following commands, which
will start gdb:

$ gdb gcclassic # for GEOS-Chem Classic
$ gdb gchp # for GCHP
$ gdb hemco # for HEMCO standalone

At the gdb prompt, type one of these commands:

(gdb) run # for GEOS-Chem Classic or GCHP
(gdb) run HEMCO_sa_Config.rc # for HEMCO standalone

With gdb, you can also go directly to the point of the error without having to re-run GEOS-Chem or HEMCO. When
your GEOS-Chem or HEMCO simulation dies, it will create a corefile such as core.12345. The 12345 refers to
the process ID assigned to your executable by the operating system; this number is different for each running process
on your system.

Typing one of these commands:

$ gdb gcclassic core.12345 # for GEOS-Chem Classic
$ gdb gchp core.12345 # for GCHP
$ gdb hemco_standalone core.12345 # for HEMCO standalone

128 Chapter 24. Debug GEOS-Chem and HEMCO errors

GCHP, Release 14.2.0

will open gdb and bring you immediately to the point of the error. If you then type at the (gdb) prompt:

(gdb) where

You will get a traceback listing.

To exit gdb, type quit.

24.11 Print it out if you are in doubt!

Add print*, statements to write values of variables in the area of the code where you suspect the error is occurring.
Also add the call flush(6) statement to flush the output to the screen and/or log file immediately after printing.
Maybe you will see something wrong in the output.

You can often detect numerical errors by adding debugging print statements into your source code:

1. Use MINVAL and MAXVAL functions to get the minimum and maximum values of an array:

PRINT*, '### Min, Max: ', MINVAL(ARRAY), MAXVAL(ARRAY)
CALL FLUSH(6)

2. Use the SUM function to check the sum of an array:

PRINT*, '### Sum of X : ', SUM(ARRAY)
CALL FLUSH(6)

24.12 Use the brute-force method when all else fails

If the bug is difficult to locate, then comment out a large section of code and run your GEOS-Chem or HEMCO
simulation again. If the error does not occur, then uncomment some more code and run again. Repeat the process until
you find the location of the error. The brute force method may be tedious, but it will usually lead you to the source of
the problem.

24.13 Identify poorly-performing code with a profiler

If you think your GEOS-Chem or HEMCO simulation is taking too long to run, consider using profiling tools to generate
a list of the time that is spent in each routine. This can help you identify badly written and/or poorly-parallelized code.
For more information, please see our Profiling GEOS-Chem wiki page.

24.11. Print it out if you are in doubt! 129

https://wiki.geos-chem.org/Profiling_GEOS-Chem

GCHP, Release 14.2.0

130 Chapter 24. Debug GEOS-Chem and HEMCO errors

CHAPTER

TWENTYFIVE

VIEW GEOS-CHEM SPECIES PROPERTIES

Properties for GEOS-Chem species are stored in the GEOS-Chem Species Database, which is a YAML file
(species_database.yml) that is placed into each GEOS-Chem run directory.

View species properties from the current stable GEOS-Chem version:

• View properties for most GEOS-Chem species

• View properties for APM microphysics species

• View properties for TOMAS microphysics species

• View properties for Hg simulation species

25.1 Species properties defined

The following sections contain a detailed description of GEOS-Chem species properties.

25.1.1 Required default properties

All GEOS-Chem species should have these properties defined:

Name:
FullName: full name of the species
Formula: chemical formula of the species
MW_g: molecular weight of the species in grams

EITHER Is_Gas: true
OR Is_Aerosol: true

All other properties are species-dependent. You may omit properties that do not apply to a given species. GEOS-
Chem will assign a “missing value” (e.g. false, -999, -999.0, or, UNKNOWN) to these properties when it reads
the species_database.yml file from disk.

131

https://yaml.org
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database.yml
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_apm.yml
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_tomas.yml
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_hg.yml

GCHP, Release 14.2.0

25.1.2 Identification

Name
Species short name (e.g. ISOP).

Formula
Species chemical formula (e.g. CH2=C(CH3)CH=CH2). This is used to define the species’ formula attribute,
which gets written to GEOS-Chem diagnostic files and restart files.

FullName
Species long name (e.g. Isoprene). This is used to define the species’ long_name attribute, which gets
written to GEOS-Chem diagnostic files and restart files.

Is_Aerosol
Indicates that the species is an aerosol (true), or isn’t (false).

Is_Advected
Indicates that the species is advected (true), or isn’t (false).

Is_DryAlt
Indicates that dry deposition diagnostic quantities for the species can be archived at a specified altitude above
the surface (true), or can’t (false).

Note: The Is_DryAlt flag only applies to species O3 and HNO3.

Is_DryDep
Indicates that the species is dry deposited (true), or isn’t (false).

Is_HygroGrowth
Indicates that the species is an aerosol that is capable of hygroscopic growth (true), or isn’t (false).

Is_Gas
Indicates that the species is a gas (true), or isn’t (false).

Is_Hg0
Indicates that the species is elemental mercury (true), or isn’t (false).

Is_Hg2
Indicates that the species is a mercury compound with oxidation state +2 (true), or isn’t (false).

Is_HgP
Indicates that the species is a particulate mercury compound (true), or isn’t (false).

Is_Photolysis
Indicates that the species is photolyzed (true), or isn’t (false).

Is_RadioNuclide
Indicates that the species is a radionuclide (true), or isn’t (false).

132 Chapter 25. View GEOS-Chem species properties

GCHP, Release 14.2.0

25.1.3 Physical properties

Density
Density (𝑘𝑔 𝑚−3) of the species. Typically defined only for aerosols.

Henry_K0
Henry’s law solubility constant (𝑀 𝑎𝑡𝑚−1), used by the default wet depositon scheme.

Henry_K0_Luo
Henry’s law solubility constant (𝑀 𝑎𝑡𝑚−1) used by the Luo et al. [[Luo et al., 2020]] wet deposition scheme.

Henry_CR
Henry’s law volatility constant (𝐾) used by the default wet deposition scheme.

Henry_CR_Luo
Henry’s law volatility constant (𝐾) used by the Luo et al. [[Luo et al., 2020]] wet deposition scheme.

Henry_pKa
Henry’s Law pH correction factor.

MW_g
Molecular weight (𝑔 𝑚𝑜𝑙−1) of the species.

Note: Some aerosol-phase species (such as MONITA and IONITA) are given the molar mass corresponding to
the number of nitrogens that they carry, whereas gas-phase species (MONITS and MONITU) get the full molar
mass of the compounds that they represent. This treatment has its origins in J. Fisher et al [2016].

Radius
Radius (𝑚) of the species. Typically defined only for aerosols.

25.1.4 Dry deposition properties

DD_AeroDryDep
Indicates that dry deposition should consider hygroscopic growth for this species (true), or shouldn’t (false).

Note: DD_AeroDryDep is only defined for sea salt aerosols.

DD_DustDryDep
Indicates that dry deposition should exclude hygroscopic growth for this species (true), or shouldn’t (false).

Note: DD_DustDryDep is only defined for mineral dust aerosols.

DD_DvzAerSnow
Specifies the dry deposition velocity (𝑐𝑚 𝑠−1) over ice and snow for certain aerosol species. Typically,
DD_DvzAerSnow = 0.03.

DD_DvzAerSnow_Luo
Specifies the dry deposition velocity (𝑐𝑚 𝑠−1) over ice and snow for certain aerosol species.

Note: DD_DvzAerSnow_Luo is only used when the Luo et al. [[Luo et al., 2020]] wet scavenging scheme is
activated.

25.1. Species properties defined 133

https://acp.copernicus.org/articles/16/5969/2016/acp-16-5969-2016.pdf

GCHP, Release 14.2.0

DD_DvzMinVal
Specfies minimum dry deposition velocities (𝑐𝑚 𝑠−1) for sulfate species (SO2, SO4, MSA, NH3, NH4, NIT).
This follows the methodology of the GOCART model.

DD_DvzMinVal is defined as a two-element vector:

• DD_DvzMinVal(1) sets a minimum dry deposition velocity onto snow and ice.

• DD_DvzMinVal(2) sets a minimum dry deposition velocity over land.

DD_Hstar_Old
Specifies the Henry’s law constant (𝐾0) that is used in dry deposition. This will be used to assign the HSTAR
variable in the GEOS-Chem dry deposition module.

Note: The value of the DD_Hstar_old parameter was tuned for each species so that the dry deposition
velocity would match observations.

DD_F0
Specifies the reactivity factor for oxidation of biological substances in dry deposition.

DD_KOA
Specifies the octanal-air partition coefficient, used for the dry deposition of species POPG.

Note: DD_KOA is only used in the POPs simulation.

25.1.5 Wet deposition properties

WD_Is_H2SO4
Indicates that the species is H2SO4 (true), or isn’t (false). This allows the wet deposition code to perform
special calculations when computing H2SO4 rainout and washout.

WD_Is_HNO3
Indicates that the species is HNO3 (true), or isn’t (false). This allows the wet deposition code to perform
special calculations when computing HNO3. rainout and washout.

WD_Is_SO2
Indicates that the species is SO2 (true), or isn’t (false). This allows the wet deposition code to perform
special calculations when computing SO2 rainout and washout.

WD_CoarseAer
Indicates that the species is a coarse aerosol (true), or isn’t (false). For wet deposition purposes, the defini-
tion of coarse aerosol is radius > 1 𝜇𝑚.

WD_LiqAndGas
Indicates that the the ice-to-gas ratio can be computed for this species by co-condensation (true), or can’t
(false).

WD_ConvFacI2G
Specifies the conversion factor (i.e. ratio of sticking coefficients on the ice surface) for computing the ice-to-gas
ratio by co-condensation, as used in the default wet deposition scheme.

Note: WD_ConvFacI2G only needs to be defined for those species for which WD_LiqAndGas is true.

134 Chapter 25. View GEOS-Chem species properties

https://wiki.geos-chem.org/POPs_simulation

GCHP, Release 14.2.0

WD_ConvFacI2G_Luo
Specifies the conversion factor (i.e. ratio of sticking coefficients on the ice surface) for computing the ice-to-gas
ratio by co-condensation, as used in the Luo et al. [[Luo et al., 2020]] wet deposition scheme.

Note: WD_ConvFacI2G_Luo only needs to be defined for those species for which WD_LiqAndGas is
true, and is only used when the Luo et al. [[Luo et al., 2020]] wet deposition scheme is activated.

WD_RetFactor
Specifies the retention efficiency 𝑅𝑖 of species in the liquid cloud condensate as it is converted to precipitation.
𝑅𝑖 < 1 accounts for volatization during riming.

WD_AerScavEff
Specifies the aerosol scavenging efficiency. This factor multiplies 𝐹 , the fraction of aerosol species that is lost
to convective updraft scavenging.

• WD_AerScavEff = 1.0 for most aerosols.

• WD_AerScavEff = 0.8 for secondary organic aerosols.

• WD_AerScavEff = 0.0 for hydrophobic aerosols.

WD_KcScaleFac
Specifies a temperature-dependent scale factor that is used to multiply 𝐾 (aka 𝐾𝑐), the rate constant for conver-
sion of cloud condensate to precipitation.

WD_KcScaleFac is defined as a 3-element vector:

• WD_KcScaleFac(1) multiplies 𝐾 when 𝑇 < 237 kelvin.

• WD_KcScaleFac(2) multiplies 𝐾 when 237 ≤ 𝑇 < 258 kelvin

• WD_KcScaleFac(3) multiplies 𝐾 when 𝑇 ≥ 258 kelvin.

WD_KcScaleFac_Luo
Specifies a temperature-dependent scale factor that is used to multiply 𝐾, aka 𝐾𝑐, the rate constant for conver-
sion of cloud condensate to precipitation.

Used only in the Luo et al. [[Luo et al., 2020]] wet deposition scheme.

WD_KcScaleFac_Luo is defined as a 3-element vector:

• WD_KcScaleFac_Luo(1) multiplies 𝐾 when 𝑇 < 237 kelvin.

• WD_KcScaleFac_Luo(2) multiplies 𝐾 when 237 ≤ 𝑇 < 258 kelvin.

• WD_KcScaleFac_Luo(3) multiplies 𝐾 when 𝑇 ≥ 258 kelvin.

WD_RainoutEff
Specifies a temperature-dependent scale factor that is used to multiply 𝐹𝑖 (aka RAINFRAC), the fraction of
species scavenged by rainout.

WD_RainoutEff is defined as a 3-element vector:

• WD_RainoutEff(1) multiplies 𝐹𝑖 when 𝑇 < 237 kelvin.

• WD_RainoutEff(2) multiplies 𝐹𝑖 when 237 ≤ 𝑇 < 258 kelvin.

• RainoutEff(3) multiplies 𝐹𝑖 when 𝑇 ≥ 258 kelvin.

This allows us to better simulate scavenging by snow and impaction scavenging of BC. For most species,
we need to be able to turn off rainout when 237 ≤ 𝑇 < 258 kelvin. This can be easily done by setting
RainoutEff(2) = 0.

25.1. Species properties defined 135

GCHP, Release 14.2.0

Note: For SOA species, the maximum value of WD_RainoutEff will be 0.8 instead of 1.0.

WD_RainoutEff_Luo
Specifies a temperature-dependent scale factor that is used to multiply 𝐹𝑖 (aka RAINFRAC), the fraction of
species scavenged by rainout. (Used only in the [[Luo et al., 2020]] wet deposition scheme).

WD_RainoutEff_Luo is defined as a 3-element vector:

• WD_RainoutEff_Luo(1) multiplies 𝐹𝑖 when 𝑇 < 237 kelvin.

• WD_RainoutEff_Luo(2) multiplies 𝐹𝑖 when 237 ≤ 𝑇 < 258 kelvin.

• RainoutEff_Luo(3) multiplies 𝐹𝑖 when 𝑇 ≥ 258 kelvin.

This allows us to better simulate scavenging by snow and impaction scavenging of BC. For most species,
we need to be able to turn off rainout when 237 ≤ 𝑇 < 258 kelvin. This can be easily done by setting
RainoutEff(2) = 0.

Note: For SOA species, the maximum value of WD_RainoutEff_Luo will be 0.8 instead of 1.0.

25.1.6 Transport tracer properties

These properties are defined for species used in the TransportTracers simulation. We will refer to these species as
tracers.

Is_Tracer
Indicates that the species is a transport tracer (true), or is not (false).

Snk_Horiz
Specifies the horizontal domain of the tracer sink term. Allowable values are:

all
The tracer sink term will be applied throughout the entire horizonatal domain of the simulation grid.

lat_zone
The tracer sink term will be applied only within the latitude range specified by Snk_Lats.

Snk_Lats
Defines the latitude range [min_latitude, max_latitude] for the tracer sink term. Will only be used
if Snk_Horiz is set to lat_zone.

Snk_Mode
Specifies how the tracer sink term will be applied. Allowable values are:

constant
The tracer sink term is a constant value (specified by Snk_Value).

efolding
The tracer sink term has an e-folding decay constant (specified in Snk_Period).

halflife
A tracer sink term has a half-life (specified in Snk_Period).

none
The tracer does not have a sink term.

Snk_Period
Specifies the period (in days) for which the tracer sink term will be applied.

136 Chapter 25. View GEOS-Chem species properties

GCHP, Release 14.2.0

Snk_Value
Specifies a value for the tracer sink term.

Snk_Vert
Specifies the vertical domain of the tracer sink term. Allowable values are:

all
The tracer sink term will be applied throughout the entire vertical domain of the simulation grid.

boundary_layer
The tracer sink term will only be applied within the planetary boundary layer.

surface
The tracer sink term will only be applied at the surface.

troposphere
The tracer sink term will only be applied within the troposphere.

Src_Add
Specifies whether the tracer has a source term (true) or not (false).

Src_Horiz
Specifies the horizontal domain of the tracer source term. Allowable values are:

all
The tracer source term will be applied across the entire horizontal extent of the simulation grid.

lat_zone
The tracer source term will only be applied within the latitude range specified by Src_Lats.

Src_Lats
Defines the latitude range [min_latitude, max_latitude] for the tracer source term. Will only be
applied if Src_Horiz is set to lat_zone.

Src_Mode
Describes the type of tracer source term. Allowable values are:

constant
The tracer source term is a constant value (specified by Src_Value).

decay_of_another_species
The tracer source term comes from the decay of another species (e.g. Pb210 source comes from Rn222
decay).

HEMCO
The tracer source term will be read from a file via HEMCO.

maintain_mixing_ratio
The tracer source term will be calculated as needed to maintain a constant mixing ratio at the surface.

none
The tracer does not have a source term.

Src_Unit
Specifies the unit of the source term that will be applied to the tracer.

ppbv
The source term has units of parts per billion by volume.

timestep
The source term has units of per emissions timestep.

Src_Value
Specifies a value for the tracer source term in Src_Units.

25.1. Species properties defined 137

GCHP, Release 14.2.0

Src_Vert
Specifies the vertical domain of the tracer source term. Allowable values are:

all
The tracer source term will be applied throughout the entire vertical domain of the simulation grid.

pressures
The tracer source term will only be applied within the pressure range specified in Src_Pressures.

stratosphere
The tracer source term will only be applied in the stratosphere.

troposphere
The tracer source term will only be applied in the troposphere.

surface
The tracer source term will only be applied at the surface.

Src_Pressures
Defines the pressure range [min_pressure, max_pressure], in hPa for the tracer source term. Will
only be used if Src_Vert is set to pressures.

Units
Specifies the default units of the tracers (e.g. aoa, aoa_nh, aoa_bl are carried in units days, while all other
species in GEOS-Chem are kg/kg dry air).

Properties used by each transport tracer

The list below shows the various transport tracer properties that are used in the current TransportTracers simulation.

Is_Tracer
- true : all

Snk_Horiz:
- lat_zone : aoa_nh
- all : all others

Snk_Lats
- 30 50 : aoa_nh

Snk_Mode
- constant : aoa, aoa_bl, aoa_nh
- efolding : CH3I, CO_25
- none : SF6
- halflife : Be7, Be7s, Be10, Be10s

Snk_Period (days)
- 5 : CH3I
- 25 : CO_25
- 50 : CO_50
- 90 : e90, e90_n, e90_s
- 11742.8 : Pb210, Pb210s
- 5.5 : Rn222
- 53.3 : Be7, Be7s
- 5.84e8 : Be10, Be10s

Snk_Value
- 0 : aoa, aoa_bl, aoa_nh

(continues on next page)

138 Chapter 25. View GEOS-Chem species properties

GCHP, Release 14.2.0

(continued from previous page)

Snk_Vert
- boundary_layer : aoa_bl
- surface : aoa, aoa_nh
- troposphere : stOx
- all : all others

Src_Add
- false : Passive, stOx, st80_25
- true : all others

Src_Horiz
- lat_zone : e90_n, e90_s, nh_5, nh_50
- all : all others

Src_Lats
- [40.0, 91.0] : e90_n
- [-91.0, -40.0] : e90_s
- [30.0, 50.0] : nh_5, nh_50

Src_Mode
- constant : aoa, aoa_bl, aoa_nh, nh_50, nh_5, st80_25
- file2d : CH3I, CO_25, CO_50, Rn222, SF6 - HEMCO
- file3d : Be10, Be7 - HEMCO
- maintain_mixing_ratio : e_90, e90_n, e90_s
- decay_of_another_species : Pb210, Pb210s

Src_Unit
- ppbv : e90, e90_n, e90_s, st80_25
- timestep : aoa, aoa_bl, aoa_nh

Src_Value
- 1 : aoa, aoa_bl, aoa_nh
- 100 : e90, e90_n, e90_s
- 200 : st80_25

Src_Vert
- all : aoa, aoa_bl, aoa_nh, Pb210
- pressures : st80_25
- stratosphere : Be10s, Be7s, Pb210s, stOx
- surface : all others (not specified when Src_Mode: HEMCO)

Src_Pressures
- [0, 80] : st80_25

Units
- days : aoa, aoa_bl, aoa_bl

25.1. Species properties defined 139

GCHP, Release 14.2.0

25.1.7 Other properties

BackgroundVV
If a restart file does not contain an global initial concentration field for a species, GEOS-Chem will attempt
to set the initial concentration (in 𝑣𝑜𝑙 𝑣𝑜𝑙−1 dry air) to the value specified in BackgroundVV globally. But
if BackgroundVV has not been specified, GEOS-Chem will set the initial concentration for the species to
10−20𝑣𝑜𝑙 𝑣𝑜𝑙−1 dry air instead.

Note: Recent versions of GCHP may require that all initial conditions for all species to be used in a simulation
be present in the restart file. See gchp.readthedocs.io for more information.

MP_SizeResAer
Indicates that the species is a size-resolved aerosol species (true), or isn’t (false). Used only by simulations
using either APM or TOMAS microphysics packages.

MP_SizeResNum
Indicates that the species is a size-resolved aerosol number (true), or isn’t (false). Used only by simulations
using either APM or TOMAS microphysics packages.

25.2 Access species properties in GEOS-Chem

In this section we will describe the derived types and objects that are used to store GEOS-Chem species properties.
We will also describe how you can extract species properties from the GEOS-Chem Species Database when you create
new GEOS-Chem code routines.

25.2.1 The Species derived type

The Species derived type (defined in module Headers/species_mod.F90) describes a complete set of properties
for a single GEOS-Chem species. In addition to the fields mentioned in the preceding sections, the Species derived
type also contains several species indices.

Table 1: Indices stored in the Species derived type
Index Description
ModelId Model species index
AdvectId Advected species index
AerosolId Aerosol species index
DryAltId Dry dep species at altitude Id
DryDepId Dry deposition species index
GasSpcId Gas-phase species index
HygGrthId Hygroscopic growth species index
KppVarId KPP variable species index
KppFixId KPP fixed spcecies index
KppSpcId KPP species index
PhotolId Photolyis species index
RadNuclId Radionuclide index
TracerId Transport tracer index
WetDepId Wet deposition index

140 Chapter 25. View GEOS-Chem species properties

https://gchp.readthedocs.io
http://wiki.geos-chem.org/APM_aerosol_microphysics
http://wiki.geos-chem.org/TOMAS_aerosol_microphysics
http://wiki.geos-chem.org/APM_aerosol_microphysics
http://wiki.geos-chem.org/TOMAS_aerosol_microphysics
https://github.com/geoschem/geos-chem/blob/main/Headers/species_mod.F90#L61

GCHP, Release 14.2.0

25.2.2 The SpcPtr derived type

The SpcPtr derived type (also defined in Headers/species_mod.F90) describes a container for an object of type
Species.

TYPE, PUBLIC :: SpcPtr
TYPE(Species), POINTER :: Info ! Single entry of Species Database

END TYPE SpcPtr

25.2.3 The GEOS-Chem Species Database object

The GEOS-Chem Species database is stored in the State_Chm%SpcData object. It describes an array, where each
element of the array is of type SpcPtr (which is a container for an object of type type Species.

TYPE(SpcPtr), POINTER :: SpcData(:) ! GC Species database

25.2.4 Species index lookup with Ind_()

Use function Ind_() (in module Headers/state_chm_mod.F90) to look up species indices by name. For
example:

SUBROUTINE MySub(..., State_Chm, ...)

USE State_Chm_Mod, ONLY : Ind_

! Local variables
INTEGER :: id_O3, id_Br2, id_CO

! Find tracer indices with function the Ind_() function
id_O3 = Ind_('O3')
id_Br2 = Ind_('Br2')
id_CO = Ind_('CO')

! Print tracer concentrations
print*, 'O3 at (23,34,1) : ', State_Chm%Species(id_O3)%Conc(23,34,1)
print*, 'Br2 at (23,34,1) : ', State_Chm%Species(id_Br2)%Conc(23,34,1)
print*, 'CO at (23,34,1) : ', State_Chm%Species(id_CO)%Conc(23,34,1)

! Print the molecular weight of O3 (obtained from the Species Database object)
print*, 'Mol wt of O3 [g]: ', State_Chm%SpcData(id_O3)%Info%MW_g

END SUBROUTINE MySub

Once you have obtained the species ID (aka ModelId) you can use that to access the individual fields in the Species
Database object. In the example above, we use the species ID for O3 (stored in id_O3) to look up the molecular
weight of O3 from the Species Database.

You may search for other model indices with Ind_() by passing an optional second argument:

! Position of HNO3 in the list of advected species
AdvectId = Ind_('HNO3', 'A')

! Position of HNO3 in the list of gas-phase species
AdvectId = Ind_('HNO3', 'G')

(continues on next page)

25.2. Access species properties in GEOS-Chem 141

https://github.com/geoschem/geos-chem/blob/main/Headers/species_mod.F90#L54

GCHP, Release 14.2.0

(continued from previous page)

! Position of HNO3 in the list of dry deposited species
DryDepId = Ind_('HNO3', 'D')

! Position of HNO3 in the list of wet deposited species
WetDepId = Ind_('HNO3', 'W')

! Position of HNO3 in the lists of fixed KPP, active, & overall KPP species
KppFixId = Ind_('HNO3', 'F')
KppVarId = Ind_('HNO3', 'V')
KppVarId = Ind_('HNO3', 'K')

! Position of SALA in the list of hygroscopic growth species
HygGthId = Ind_('SALA', 'H')

! Position of Pb210 in the list of radionuclide species
HygGthId = Ind_('Pb210', 'N')

! Position of ACET in the list of photolysis species
PhotolId = Ind('ACET', 'P')

Ind_() will return -1 if a species does not belong to any of the above lists.

Tip: For maximum efficiency, we recommend that you use Ind_() to obtain the species indices during the initial-
ization phase of a GEOS-Chem simulation. This will minimize the number of name-to-index lookup operations that
need to be performed, thus reducing computational overhead.

Implementing the tip mentioned above:

MODULE MyModule

IMPLICIT NONE
. . .

! Species ID of CO. All subroutines in MyModule can refer to id_CO.
INTEGER, PRIVATE :: id_CO

CONTAINS

. . . other subroutines . . .

SUBROUTINE Init_MyModule

! This subroutine only gets called at startup

. . .

! Store ModelId in the global id_CO variable
id_CO = Ind_('CO')

. . .

END SUBROUTINE Init_MyModule

END MODULE MyModule

142 Chapter 25. View GEOS-Chem species properties

GCHP, Release 14.2.0

25.2.5 Species lookup within a loop

If you need to access species properties from within a loop, it is better not to use the Ind_() function, as repeated
name-to-index lookups will incur computational overhead. Instead, you can access the species properties directly from
the GEOS-Chem Species Database object, as shown here.

SUBROUTINE MySub(..., State_Chm, ...)

!%%% MySub is an example of species lookup within a loop %%%

! Uses
USE Precision_Mod
USE State_Chm_Mod, ONLY : ChmState
USE Species_Mod, ONLY : Species

! Chemistry state object (which also holds the species database)
TYPE(ChmState), INTENT(INOUT) :: State_Chm

! Local variables
INTEGER :: N
TYPE(Species), POINTER :: ThisSpc
INTEGER :: ModelId, DryDepId, WetDepId
REAL(fp) :: Mw_g
REAL(f8) :: Henry_K0, Henry_CR, Henry_pKa

! Loop over all species
DO N = 1, State_Chm%nSpecies

! Point to the species database entry for this species
! (this makes the coding simpler)
ThisSpc => State_Chm%SpcData(N)%Info

! Get species properties
ModelId = ThisSpc%ModelId
DryDepId = ThisSpc%DryDepId
WetDepId = ThisSpc%WetDepId
MW_g = ThisSpc%MW_g
Henry_K0 = ThisSpc%Henry_K0
Henry_CR = ThisSpc%Henry_CR
Henry_pKa = ThisSpc%Henry_pKA

IF (ThisSpc%Is_Gas)
! ... The species is a gas-phase species
! ... so do something appropriate

ELSE
! ... The species is an aerosol
! ... so do something else appropriate

ENDIF

IF (ThisSpc%Is_Advected) THEN
! ... The species is advected
! ... (i.e. undergoes transport, PBL mixing, cloud convection)

ENDIF

IF (ThisSpc%Is_DryDep) THEN
! ... The species is dry deposited

ENDIF
(continues on next page)

25.2. Access species properties in GEOS-Chem 143

GCHP, Release 14.2.0

(continued from previous page)

IF (ThisSpc%Is_WetDep) THEN
! ... The species is soluble and wet deposits
! ... it is also scavenged in convective updrafts
! ... it probably has defined Henry's law properties

ENDIF

... etc ...

! Free the pointer
ThisSpc => NULL()

ENDDO

END SUBROUTINE MySub

144 Chapter 25. View GEOS-Chem species properties

CHAPTER

TWENTYSIX

UPDATE CHEMICAL MECHANISMS WITH KPP

This Guide demonstrates how you can use The Kinetic PreProcessor (aka KPP) to translate a chemical mechanism
specification in plain text format to highly-optimized Fortran90 code for use with GEOS-Chem:

Attention: You must use at least KPP 3.0.0 with the current GEOS-Chem release series.

26.1 Using KPP: Quick start

26.1.1 1. Navigate to the KPP/custom folder within GEOS-Chem

The KPP/custom folder is intended for building customized mechanisms. (The standard mechanisms that ship with
GEOS-Chem are contained in other folders named KPP/fullchem and KPP/Hg, but we will leave these alone.)

If you are using GEOS-Chem “Classic”, type:

$ cd GCClassic/src/GEOS-Chem/KPP/custom

or if you are using GCHP, type:

$ cd GCHP/GCHP_GridComp/GEOSChem_GridComp/geos-chem/KPP/custom

26.1.2 2. Edit the chemical mechanism configuration files

The KPP/custom folder contains sample chemical mechanism specification files (custom.eqn and custom.kpp).
These files define the chemical mechanism and are copies of the default fullchem mechanism configuration files
found in the KPP/fullchem folder. (For a complete description of KPP configuration files, please see the documen-
tation at kpp.readthedocs.io.)

You can edit these custom.eqn and custom.kpp configuration files to define your own custom mechanism (cf. Using
KPP: Reference section for details).

Important: We recommend always building a custom mechanism from the KPP/custom folder, and to leave
the other folders untouched. This will allow you to validate your modified mechanism against one of the standard
mechanisms that ship with GEOS-Chem.

145

https://kpp.readthedocs.io
https://kpp.readthedocs.io/en/stable/getting_started/00_revision_history.html#kpp-3-0-0
https://kpp.readthedocs.io

GCHP, Release 14.2.0

custom.eqn

The custom.eqn configuration file contains:

• List of active species

• List of inactive species

• Gas-phase reactions

• Heterogeneous reactions

• Photolysis reactions

custom.kpp

The custom.kpp configuration file is the main configuration file. It contains:

• Solver options

• Production and loss family definitions

• Functions to compute reaction rates

• Global definitions

• An #INCLUDE custom.eqn command, which tells KPP to look for chemical reaction definitions in cus-
tom.eqn.

Important: The symbolic link gckpp.kpp points to custom.kpp. This is necessary in order to generate Fortran
files with the the naming convention gckpp*.F90.

26.1.3 3. Run the build_mechanism.sh script

Once you are satisfied with your custom mechanism specification you may now use KPP to build the source code files
for GEOS-Chem.

Return to the top-level KPP folder from KPP/custom:

$ cd ..

There you will find a script named build_mechanism.sh, which is the driver script for running KPP. Execute the
script as follows:

$./build_mechanism.sh custom

This will run the KPP executable (located in the folder $KPP_HOME/bin) custom.kpp configuration file (via
symbolic link gckpp.kpp, It also runs a python script to generate code for the OH reactivity diagnostic. You should
see output similar to this:

This is KPP-X.Y.Z.

KPP is parsing the equation file.
KPP is computing Jacobian sparsity structure.
KPP is starting the code generation.
KPP is initializing the code generation.
KPP is generating the monitor data:

(continues on next page)

146 Chapter 26. Update chemical mechanisms with KPP

GCHP, Release 14.2.0

(continued from previous page)

- gckpp_Monitor
KPP is generating the utility data:

- gckpp_Util
KPP is generating the global declarations:

- gckpp_Main
KPP is generating the ODE function:

- gckpp_Function
KPP is generating the ODE Jacobian:

- gckpp_Jacobian
- gckpp_JacobianSP

KPP is generating the linear algebra routines:
- gckpp_LinearAlgebra

KPP is generating the utility functions:
- gckpp_Util

KPP is generating the rate laws:
- gckpp_Rates

KPP is generating the parameters:
- gckpp_Parameters

KPP is generating the global data:
- gckpp_Global

KPP is generating the driver from none.f90:
- gckpp_Main

KPP is starting the code post-processing.

KPP has succesfully created the model "gckpp".

Reactivity consists of xxx reactions # NOTE: xxx will be replaced by the actual
→˓number
Written to gckpp_Util.F90

where X.Y.Z denotes the KPP version that you are using.

If this process is successful, the custom folder will have several new files starting with gckpp:

$ ls gckpp*
gckpp_Function.F90 gckpp_Jacobian.F90 gckpp.log gckpp_Precision.
→˓F90
gckpp_Global.F90 gckpp_JacobianSP.F90 gckpp_Model.F90 gckpp_Rates.F90
gckpp_Initialize.F90 gckpp.kpp@ gckpp_Monitor.F90 gckpp_Util.F90
gckpp_Integrator.F90 gckpp_LinearAlgebra.F90 gckpp_Parameters.F90

The gckpp*.F90 files contain optimized Fortran-90 instructions for solving the chemical mechanism that you have
specified. The gckpp.log file is a human-readable description of the mechanism. Also, gckpp.kpp is a symbolic
link to the custom.kpp file.

A complete description of these KPP-generated files at kpp.readthedocs.io.

26.1. Using KPP: Quick start 147

https://kpp.readthedocs.io/en/latest/using_kpp/05_output_from_kpp.html#the-fortran90-code

GCHP, Release 14.2.0

26.1.4 4. Recompile GEOS-Chem with your custom mechanism

GEOS-Chem will always use the default mechanism (which is named fullchem). To tell GEOS-Chem to use the
custom mechanism instead, follow these steps.

Tip: GEOS-Chem Classic run directories have a subdirectory named build in which you can configure and build
GEOS-Chem. If you don’t have a build directory, you can add one to your run directory with mkdir build.

From the build directory, type:

$ cmake ../CodeDir -DMECH=custom -DRUNDIR=..

You should see output similar to this written to the screen:

-- General settings:

* MECH: fullchem carbon Hg **custom**

This confirms that the custom mechanism has been selected.

Once you have configured GEOS-Chem to use the custom mechanism, you may build the exectuable. Type:

$ make -j
$ make -j install

The executable file (gcclassic or gchp, depending on which mode of GEOS-Chem that you are using) will be
placed in the run directory.

26.2 Using KPP: Reference section

26.2.1 Adding species to a mechanism

List chemically-active (aka variable) species in the #DEFVAR section of custom.eqn, as shown below:

#DEFVAR
A3O2 = IGNORE; {CH3CH2CH2OO; Primary RO2 from C3H8}
ACET = IGNORE; {CH3C(O)CH3; Acetone}
ACTA = IGNORE; {CH3C(O)OH; Acetic acid}
...etc ...

The IGNORE tells KPP not to perform mass-balance checks, which would make GEOS-Chem execute more slowly.

List species whose concentrations do not change in the #DEFFIX section of custom.eqn, as shown below:

#DEFFIX
H2 = IGNORE; {H2; Molecular hydrogen}
N2 = IGNORE; {N2; Molecular nitrogen}
O2 = IGNORE; {O2; Molecular oxygen}
... etc ...

Species may be listed in any order, but we have found it convenient to list them alphabetically.

148 Chapter 26. Update chemical mechanisms with KPP

https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#defvar-and-deffix
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#defvar-and-deffix

GCHP, Release 14.2.0

26.2.2 Adding reactions to a mechanism

Gas-phase reactions

List gas-phase reactions first in the #EQUATIONS section of custom.eqn.

#EQUATIONS
//
// Gas-phase reactions
//
...skipping over the comment header...
//
O3 + NO = NO2 + O2 : GCARR_ac(3.00E-12, -1500.0);
O3 + OH = HO2 + O2 : GCARR_ac(1.70E-12, -940.0);
O3 + HO2 = OH + O2 + O2 : GCARR_ac(1.00E-14, -490.0);
O3 + NO2 = O2 + NO3 : GCARR_ac(1.20E-13, -2450.0);
... etc ...

Gas-phase reactions: General form

No matter what reaction is being added, the general procedure is the same. A new line must be added to custom.eqn
of the following form:

A + B = C + 2.000D : RATE_LAW_FUNCTION(ARG_A, ARG_B ...);

The denotes the reactants (𝐴 and 𝐵) as well as the products (𝐶 and 𝐷) of the reaction. If exactly one molecule is
consumed or produced, then the factor can be omitted; otherwise the number of molecules consumed or produced
should be specified with at least 1 decimal place of accuracy. The final section, between the colon and semi-colon,
specifies the function RATE_LAW_FUNCTION and its arguments which will be used to calculate the reaction rate
constant k. Rate-law functions are specified in the custom.kpp file.

For an equation such as the one above, the overall rate at which the reaction will proceed is determined by 𝑘[𝐴][𝐵].
However, if the reaction rate does not depend on the concentration of 𝐴 or 𝐵, you may write it with a constant value,
such as:

A + B = C + 2.000D : 8.95d-17

This will save the overhead of a function call.

Rates for two-body reactions according to the Arrhenius law

For many reactions, the calculation of k follows the Arrhenius law:

k = a0 * (300 / TEMP)**b0 * EXP(c0 / TEMP)

Important: In relation to Arrhenius parameters that you may find in scientific literature, 𝑎0 represents the 𝐴 term
and 𝑐0 represents −𝐸/𝑅 (not 𝐸/𝑅, which is usually listed).

For example, the JPL chemical data evaluation), (Feb 2017) specifies that the reaction O3 + NO produces NO2 and
O2, and its Arrhenius parameters are 𝐴 = 3.0x10^-12 and 𝐸/𝑅 = 1500. To use the Arrhenius formulation above, we
must specify 𝑎0 = 3.0𝑒− 12 and 𝑐0 = −1500.

26.2. Using KPP: Reference section 149

https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#equations
https://jpldataeval.jpl.nasa.gov

GCHP, Release 14.2.0

To specify a two-body reaction whose rate follows the Arrhenius law, you can use the GCARR rate-law function, which
is defined in gckpp.kpp. For example, the entry for the 𝑂3 + 𝑁𝑂 = 𝑁𝑂2 + 𝑂2 reaction can be written as in
custom.eqn as:

O3 + NO = NO2 + O2 : GCARR(3.00E12, 0.0, -1500.0);

Other rate-law functions

The gckpp.kpp file contains other rate law functions, such as those required for three-body, pressure-dependent
reactions. Any rate function which is to be referenced in the custom.eqn file must be available in gckpp.kpp
prior to building the reaction mechanism.

Making your rate law functions computationally efficient

We recommend writing your rate-law functions so as to avoid explicitly casting variables from REAL*4 to REAL*8.
Code that looks like this:

REAL, INTENT(IN) :: A0, B0, C0
rate = DBLE(A0) + (300.0 / TEMP)**DBLE(B0) + EXP(DBLE(C0)/ TEMP)

Can be rewritten as:

REAL(kind=dp), INTENT(IN) :: A0, B0, C0
rate = A0 + (300.0d0 / TEMP)**B0 + EXP(C0/ TEMP)

Not only do casts lead to a loss of precision, but each cast takes a few CPU clock cycles to execute. Because these
rate-law functions are called for each cell in the chemistry grid, wasted clock cycles can accumulate into a noticeable
slowdown in execution.

You can also make your rate-law functions more efficient if you rewrite them to avoid computing terms that evaluate
to 1. We saw above (cf. Rates for two-body reactions according to the Arrhenius law) that the rate of the reaction
𝑂3 + 𝑁𝑂 = 𝑁𝑂2 + 𝑂2 can be computed according to the Arrhenius law. But because b0 = 0, term (300/
TEMP)**b0 evaluates to 1. We can therefore rewrite the computation of the reaction rate as:

k = 3.0x10^-12 + EXP(1500 / TEMP)

Tip: The EXP() and ** mathematical operations are among the most costly in terms of CPU clock cycles. Avoid
calling them whenever necessary.

A recommended implementation would be to create separate rate-law functions that take different arguments depend-
ing on which parameters are nonzero. For example, the Arrhenius law function GCARR can be split into multiple
functions:

1. GCARR_abc(a0, b0, c0): Use when a0 > 0 and b0 > 0 and c0 > 0

2. GCARR_ab(a0, b0): Use when a0 > 0 and b0 > 0

3. GCARR_ac(a0, c0): Use when a0 > 0 and c0 > 0

Thus we can write the O3 + NO reaction in custom.eqn as:

O3 + NO = NO2 + O2 : GCARR_ac(3.00d12, -1500.0d0);

using the rate law function for when both a0 > 0 and c0 > 0.

150 Chapter 26. Update chemical mechanisms with KPP

GCHP, Release 14.2.0

26.2.3 Heterogeneous reactions

List heterogeneous reactions after all of the gas-phase reactions in custom.eqn, according to the format below:

//
// Heterogeneous reactions
//
HO2 = O2 : HO2uptk1stOrd(State_Het);
→˓{2013/03/22; Paulot2009; FP,EAM,JMAO,MJE}
NO2 = 0.500HNO3 + 0.500HNO2 : NO2uptk1stOrdAndCloud(State_Het);
NO3 = HNO3 : NO3uptk1stOrdAndCloud(State_Het);
NO3 = NIT : NO3hypsisClonSALA(State_Het);
→˓{2018/03/16; XW}
... etc ...

A simple example is uptake of HO2, specified as

HO2 = H2O : HO2uptk1stOrd(State_Het);

Note: KPP requires that each reaction have at least one product. In order to satisfy this requirement, you might need
to set the product of your heterogeneous reaction to a dummy product or a fixed species (i.e. one whose concentration
does not change with time).

The rate law function NO2uptk1stOrd is contained in the Fortran module KPP/fullchem/
fullchem_RateLawFuncs.F90, which is symbolically linked to the custom folder. The
fullchem_RateLawFuncs.F90 file is inlined into gckpp_Rates.F90 so that it can be used within the
custom mechanism.

To implement an additional heterogeneous reaction, the rate calculation must be added to the KPP/custom/
custom.eqn file. Rate calculations may be specified as mathematical expressions (using any of the variables con-
tained in the gckpp_Global.F90)

SPC1 + SPC2 = SPC3 + SPC4: 8.0e-13 * TEMP_OVER_K300; {Example}

or you may define a new rate law function in the fullchem_RateLawFuncs.F90 such as:

SPC1 + SPC2 = SPC3 + SPC4: myNewRateFunction(State_Het); {Example}

26.2.4 Photolysis reactions

List photolysis reactions after the heterogeneous reactions, as shown below.

//
// Photolysis reactions
//
O3 + hv = O + O2 : PHOTOL(2); {2014/02/03; Eastham2014;
→˓ SDE}
O3 + hv = O1D + O2 : PHOTOL(3); {2014/02/03; Eastham2014;
→˓ SDE}
O2 + hv = 2.000O : PHOTOL(1); {2014/02/03; Eastham2014;
→˓ SDE}
... etc ...

(continues on next page)

26.2. Using KPP: Reference section 151

GCHP, Release 14.2.0

(continued from previous page)

NO3 + hv = NO2 + O : PHOTOL(12); {2014/02/03; Eastham2014;
→˓ SDE}
... etc ...

A photolysis reaction can be specified by giving the correct index of the PHOTOL array. This index can be determined
by inspecting the file FJX_j2j.dat.

Tip: See the photolysis section of geoschem_config.yml to determine the folder in which FJX_j2j.dat is
located.

For example, one branch of the 𝑁𝑂3 photolysis reaction is specified in the custom.eqn file as

NO3 + hv = NO2 + O : PHOTOL(12)

Referring back to FJX_j2j.dat shows that reaction 12, as specified by the left-most index, is indeed 𝑁𝑂3 =
𝑁𝑂2 +𝑂:

12 NO3 PHOTON NO2 O 0.886 /NO3 /

If your reaction is not already in FJX_j2j.dat, you may add it there. You may also need to modify FJX_spec.
dat (in the same folder ast FJX_j2j.dat) to include cross-sections for your species. Note that if you add new
reactions to FJX_j2j.dat you will also need to set the parameter JVN_ in GEOS-Chem module Headers/
CMN_FJX_MOD.F90 to match the total number of entries.

If your reaction involves new cross section data, you will need to follow an additional set of steps. Specifically, you
will need to:

1. Estimate the cross section of each wavelength bin (using the correlated-k method), and

2. Add this data to the FJX_spec.dat file.

For the first step, you can use tools already available on the Prather research group website. To generate the cross-
sections used by Fast-JX, download the file UCI_fastJ_addX_73cx.tar.gz. You can then simply add your data to
FJX_spec.dat and refer to it in FJX_j2j.dat as specified above. The following then describes how to generate
a new set of cross-section data for the example of some new species MEKR:

To generate the photolysis cross sections of a new species, come up with some unique name which you will use to refer
to it in the FJX_j2j.dat and FJX_spec.dat files - e.g. MEKR. You will need to copy one of the addX_*.f
routines and make your own (say, addX_MEKR.f). Your edited version will need to read in whatever cross section
data you have available, and you’ll need to decide how to handle out-of-range information - this is particularly crucial
if your cross section data is not defined in the visible wavelengths, as there have been some nasty problems in the
past caused by implicitly assuming that the XS can be extrapolated (I would recommend buffering your data with zero
values at the exact limits of your data as a conservative first guess). Then you need to compile that as a standalone code
and run it; this will spit out a file fragment containing the aggregated 18-bin cross sections, based on a combination
of your measured/calculated XS data and the non-contiguous bin subranges used by Fast-JX. Once that data has been
generated, just add it to FJX_spec.dat and refer to it as above. There are examples in the addX files of how to deal
with variations of cross section with temperature or pressure, but the main takeaway is that you will generate multiple
cross section entries to be added to FJX_spec.dat with the same name.

Important: If your cross section data varies as a function of temperature AND pressure, you need to do something a
little different. The acetone XS documentation shows one possible way to handle this; Fast-JX currently interpolates
over either T or P, but not both, so if your data varies over both simultaneously then this will take some thought. The
general idea seems to be that one determines which dependence is more important and uses that to generate a set of 3
cross sections (for interpolation), assuming values for the unused variable based on the standard atmosphere.

152 Chapter 26. Update chemical mechanisms with KPP

http://ftp.as.harvard.edu/gcgrid/data/ExtData/CHEM_INPUTS/FAST_JX/code/UCI_fastJ_addX_73cx.tar.gz

GCHP, Release 14.2.0

26.2.5 Adding production and loss families to a mechanism

Certain common families (e.g. 𝑃𝑂𝑥, 𝐿𝑂𝑥) have been pre-defined for you. You will find the family definitions near
the top of the custom.kpp file (which is symbolically linked to gckpp,kpp):

#FAMILIES
POx : O3 + NO2 + 2NO3 + PAN + PPN + MPAN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2 +
→˓2BrNO3 + MPN + ETHLN + MVKN + MCRHN + MCRHNB + PROPNN + R4N2 + PRN1 + PRPN + R4N1 +
→˓HONIT + MONITS + MONITU + OLND + OLNN + IHN1 + IHN2 + IHN3 + IHN4 + INPB + INPD +
→˓ICN + 2IDN + ITCN + ITHN + ISOPNOO1 + ISOPNOO2 + INO2B + INO2D + INA + IDHNBOO +
→˓IDHNDOO1 + IDHNDOO2 + IHPNBOO + IHPNDOO + ICNOO + 2IDNOO + MACRNO2 + ClO + HOCl +
→˓ClNO2 + 2ClNO3 + 2Cl2O2 + 2OClO + O + O1D + IO + HOI + IONO + 2IONO2 + 2OIO + 2I2O2
→˓+ 3I2O3 + 4I2O4;
LOx : O3 + NO2 + 2NO3 + PAN + PPN + MPAN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2 +
→˓2BrNO3 + MPN + ETHLN + MVKN + MCRHN + MCRHNB + PROPNN + R4N2 + PRN1 + PRPN + R4N1 +
→˓HONIT + MONITS + MONITU + OLND + OLNN + IHN1 + IHN2 + IHN3 + IHN4 + INPB + INPD +
→˓ICN + 2IDN + ITCN + ITHN + ISOPNOO1 + ISOPNOO2 + INO2B + INO2D + INA + IDHNBOO +
→˓IDHNDOO1 + IDHNDOO2 + IHPNBOO + IHPNDOO + ICNOO + 2IDNOO + MACRNO2 + ClO + HOCl +
→˓ClNO2 + 2ClNO3 + 2Cl2O2 + 2OClO + O + O1D + IO + HOI + IONO + 2IONO2 + 2OIO + 2I2O2
→˓+ 3I2O3 + 4I2O4;
PCO : CO;
LCO : CO;
PSO4 : SO4;
LCH4 : CH4;
PH2O2 : H2O2;

Note: The 𝑃𝑂𝑥, 𝐿𝑂𝑥, 𝑃𝐶𝑂, and 𝐿𝐶𝑂 families are used for computing budgets in the GEOS-Chem benchmark
simulations. 𝑃𝑆𝑂4 is required for simulations using TOMAS aerosol microphysics.

To add a new prod/loss family, add a new line to the #FAMILIES section with the format

FAM_NAME : MEMBER_1 + MEMBER_2 + ... + MEMBER_N;

The family name must start with P or L to indicate whether KPP should calculate a production or a loss rate. You
will also need to make a corresponding update to the GEOS-Chem species database (species_database.yml)
in order to define the FullName, Is_Gas, and MW_g, and attributes. For example, the entries for family species
LCO and PCO are:

LCO:
FullName: Dummy species to track loss rate of CO
Is_Gas: true
MW_g: 28.01

PCO:
FullName: Dummy species to track production rate of CO
Is_Gas: true
MW_g: 28.01

The maximum number of families allowed by KPP is currently set to 300. Depending on how many prod/loss families
you add, you may need to increase that to a larger number to avoid errors in KPP. You can change the number for
MAX_FAMILIES in KPP/kpp-code/src/gdata.h and then rebuild the KPP executable.

// - Many limits can be changed here by adjusting the MAX_* constants
// - To increase the max size of inlined code (F90_GLOBAL etc.),
// change MAX_INLINE in scan.h.
//

(continues on next page)

26.2. Using KPP: Reference section 153

https://kpp.readthedocs.io/en/stable/getting_started/01_installation.html#build-the-kpp-executableFlexChem

GCHP, Release 14.2.0

(continued from previous page)

// NOTES:
// ------
// (1) Note: MAX_EQN or MAX_SPECIES over 1023 causes a seg fault in CI build
// -- Lucas Estrada, 10/13/2021
//
// (2) MacOS has a hard limit of 65332 bytes for stack memory. To make
// sure that you are using this max amount of stack memory, add
// "ulimit -s 65532" in your .bashrc or .bash_aliases script. We must
// also set smaller limits for MAX_EQN and MAX_SPECIES here so that we
// do not exceed the avaialble stack memory (which will result in the
// infamous "Segmentation fault 11" error). If you are stll having
// problems on MacOS then consider reducing MAX_EQN and MAX_SPECIES
// to smaller values than are listed below.
// -- Bob Yantosca (03 May 2022)
#ifdef MACOS
#define MAX_EQN 2000 // Max number of equations (MacOS only)
#define MAX_SPECIES 1000 // Max number of species (MacOS only)
#else
#define MAX_EQN 11000 // Max number of equations
#define MAX_SPECIES 6000 // Max number of species
#endif
#define MAX_SPNAME 30 // Max char length of species name
#define MAX_IVAL 40 // Max char length of species ID ?
#define MAX_EQNTAG 32 // Max length of equation ID in eqn file
#define MAX_K 1000 // Max length of rate expression in eqn file
#define MAX_ATOMS 10 // Max number of atoms
#define MAX_ATNAME 10 // Max char length of atom name
#define MAX_ATNR 250 // Max number of atom tables
#define MAX_PATH 300 // Max char length of directory paths
#define MAX_FILES 20 // Max number of files to open
#define MAX_FAMILIES 300 // Max number of family definitions
#define MAX_MEMBERS 150 // Max number of family members
#define MAX_EQNLEN 300 // Max char length of equations
#define MAX_EQNLEN 200

Important: When adding a prod/loss family or changing any of the other settings in gckpp.kpp, you must re-run
KPP to produce new Fortran90 files for GEOS-Chem.

Production and loss families are archived via the HISTORY diagnostics. For more information, please see the Guide
to GEOS_Chem History diagnostics on the GEOS-Chem wiki.

26.2.6 Changing the numerical integrator

Several global options for KPP are listed at the top of the gckpp.kpp file:

#MINVERSION 3.0.0 { Need this version of KPP or later }
#INTEGRATOR rosenbrock_autoreduce { Use Rosenbrock integration method }
#AUTOREDUCE on { ... with autoreduce enabled but optional }
#LANGUAGE Fortran90 { Generate solver code in Fortran90 ... }
#UPPERCASEF90 on { ... with .F90 suffix (instead of .f90) }
#DRIVER none { Do not create gckpp_Main.F90 }
#HESSIAN off { Do not create the Hessian matrix }
#MEX off { MEX is for Matlab, so skip it }
#STOICMAT off { Do not create stoichiometric matrix }

154 Chapter 26. Update chemical mechanisms with KPP

http://wiki.geos-chem.org/Guide_to_GEOS_Chem_History_diagnostics
http://wiki.geos-chem.org/Guide_to_GEOS_Chem_History_diagnostics

GCHP, Release 14.2.0

The #INTEGRATOR tag specifies the choice of numerical integrator that you wish to use with your chemical mecha-
nism. The table below lists

Table 1: Integrators used for each KPP-based GEOS-Chem mechanism
Simulation #INTEGRATOR #AUTOREDUCE
carbon feuler
custom rosenbrock_autoreduce on
fullchem rosenbrock_autoreduce on
Hg rosenbrock

Attention: The auto-reduction option is activated but disabled by default in the GEOS-Chem carbon and fullchem
mechanisms. You must activate the auto-reduction option in geoschem_config.yml.

If you wish to use a different integrator for research purposes, you may select from several more options.

The #LANGUAGE should be set to Fortran90 and #UPPERCASEF90 should be set to on.

The #MINVERSION should be set to 3.0.0. This is the minimum KPP version you should be using with GEOS-Chem.

The other options should be left as they are, as they are not relevant to GEOS-Chem.

For more information about KPP settings, please see https://kpp.readthedocs.io.

26.2. Using KPP: Reference section 155

https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#integrator
https://kpp.readthedocs.io/en/latest/tech_info/07_numerical_methods.html
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#language
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#uppercasef90
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#minversion
kpp.readthedocs.io

GCHP, Release 14.2.0

156 Chapter 26. Update chemical mechanisms with KPP

CHAPTER

TWENTYSEVEN

VIEW RELATED DOCUMENTATION

Table 1: GEOS-Chem web, wiki and Youtube channel
Site Link
GEOS-Chem web site geos-chem.org
GEOS-Chem wiki wiki.geos-chem.org
Video tutorials on Youtube (various) youtube.com/~geoschem

Table 2: User manuals for GEOS-Chem and related software
Software Maintained by Documentation and contact

info
GEOS-Chem Classic GCST geos-chem.readthedocs.io
GCHP GCST gchp.readthedocs.io
HEMCO GCST hemco.readthedocs.io
GEOS-Chem on the cloud GCST geos-chem-

cloud.readthedocs.io
GCPy (Python toolkit) GCST gcpy.readthedocs.io
WRF-GC (GEOS-Chem in WRF) WRF-GC developers wrf.geos-chem.org
KPP (The Kinetic PreProcessor) KPP developers kpp.readthedocs.io
IMI (Integrated Methane Inversion) IMI developers imi.readthedocs.io
CHEEREIO (Data assimilation & emissions inver-
sions)

Drew Pendergrass (Har-
vard)

cheereio.readthedocs.io

Table 3: User manual archives for unsupported legacy software
Legacy Software Documentation archive
Unsupported GEOS-Chem Classic versions (prior to 13.0.0) geoschem.github.io/gcclassic-manpage-archive
GAMAP (superseded by GCPy) geoschem.github.io/gamap-manual

157

http://geos-chem.org
http://wiki.geos-chem.org
https://youtube.com/~geoschem
htts://geos-chem.org/support-team.html
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io
https://geos-chem-cloud.readthedocs.io
https://geos-chem-cloud.readthedocs.io
https://gcpy.readthedocs.io
http://wrf.geos-chem.org
https://kpp.readthedocs.io
https://imi.readthedocs.io
https://cheereio.readthedocs.io
https://geoschem.github.io/gcclassic-manpage-archive
https://geoschem.github.io/gamap-manual

GCHP, Release 14.2.0

158 Chapter 27. View related documentation

CHAPTER

TWENTYEIGHT

SUPPORT GUIDELINES

GEOS-Chem support is maintained by the GEOS-Chem Support Team (GCST), which is based jointly at Harvard
University and Washington University in St. Louis.

We track bugs, user questions, and feature requests through GitHub issues. Please help out as you can in response to
issues and user questions.

28.1 How to report a bug

We use GitHub to track issues. To report a bug, open a new issue. Please include your name, institution, and all
relevant information, such as simulation log files and instructions for replicating the bug.

28.2 Where can I ask for help?

We use GitHub issues to support user questions. To ask a question, open a new issue and select the question template.
Please include your name and institution in the issue.

28.3 What type of support can I expect?

We will be happy to assist you in resolving bugs and technical issues that arise when compiling or running GEOS-
Chem. User support and outreach is an important part of our mission to support the International GEOS-Chem User
Community.

Even though we can assist in several ways, we cannot possibly do everything. We rely on GEOS-Chem users being
resourceful and willing to try to resolve problems on their own to the greatest extent possible.

If you have a science question rather than a technical question, you should contact the relevant GEOS-Chem Working
Group(s) directly. But if you do not know whom to ask, you may open a new issue (See “Where can I ask for help”
above) and we will be happy to direct your question to the appropriate person(s).

159

https://www.youtube.com/watch?v=dFBhdotYVf8
https://github.com/geoschem/GCHP/issues/new/choose
https://github.com/geoschem/GCHP/issues/new/choose
https://geoschem.github.io/geos-chem-people-projects-map/
https://geoschem.github.io/geos-chem-people-projects-map/
https://geos-chem.seas.harvard.edu/geos-working-groups
https://geos-chem.seas.harvard.edu/geos-working-groups

GCHP, Release 14.2.0

28.4 How to submit changes

Please see Contributing Guidelines.

28.5 How to request an enhancement

Please see Contributing Guidelines.

160 Chapter 28. Support Guidelines

https://gchp.readthedocs.io/en/latest/reference/CONTRIBUTING.html
https://gchp.readthedocs.io/en/latest/reference/CONTRIBUTING.html

CHAPTER

TWENTYNINE

CONTRIBUTING GUIDELINES

Thank you for looking into contributing to GEOS-Chem! GEOS-Chem is a grass-roots model that relies on contribu-
tions from community members like you. Whether you’re new to GEOS-Chem or a longtime user, you’re a valued
member of the community, and we want you to feel empowered to contribute.

Updates to the GEOS-Chem model benefit both you and the entire GEOS-Chem community. You benefit through
coauthorship and citations. Priority development needs are identified at GEOS-Chem users’ meetings with updates
between meetings based on GEOS-Chem Steering Committee (GCSC) input through Working Groups.

29.1 We use GitHub and ReadTheDocs

We use GitHub to host the GCHP source code, to track issues, user questions, and feature requests, and to accept pull
requests: https://github.com/geoschem/GCHP. Please help out as you can in response to issues and user questions.

GCHP Classic documentation can be found at gchp.readthedocs.io.

29.2 When should I submit updates?

Submit bug fixes right away, as these will be given the highest priority. Please see “Support Guidelines” for more
information.

Submit updates (code and/or data) for mature model developments once you have submitted a paper on the topic. Your
Working Group chair can offer guidance on the timing of submitting code for inclusion into GEOS-Chem.

The practical aspects of submitting code updates are listed below.

29.3 How can I submit updates?

We use GitHub Flow, so all changes happen through pull requests. This workflow is described here.

As the author you are responsible for:

• Testing your changes

• Updating the user documentation (if applicable)

• Supporting issues and questions related to your changes

161

https://geoschem.github.io/geos-chem-people-projects-map/
https://geos-chem.seas.harvard.edu/geos-new-developments
https://geos-chem.seas.harvard.edu/geos-steering-cmte
https://geos-chem.seas.harvard.edu/geos-working-groups
https://github.com/geoschem/GCHP
https://geos-chem.readthedocs.io
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html

GCHP, Release 14.2.0

29.3.1 Process for submitting code updates

1. Contact your GEOS-Chem Working Group leaders to request that your updates be added to GEOS-Chem. They
will will forward your request to the GCSC.

2. The GCSC meets quarterly to set GEOS-Chem model development priorities. Your update will be slated for
inclusion into an upcoming GEOS-Chem version.

3. Create or log into your GitHub account.

4. Fork the relevant GEOS-Chem repositories into your Github account.

5. Clone your forks of the GEOS-Chem repositories to your computer system.

6. Add your modifications into a new branch off the main branch.

7. Test your update thoroughly and make sure that it works. For structural updates we recommend performing a
difference test (i.e. testing against the prior version) in order to ensure that identical results are obtained).

8. Review the coding conventions and checklists for code and data updates listed below.

9. Create a pull request in GitHub.

10. The GEOS-Chem Support Team will add your updates into the development branch for an upcoming GEOS-
Chem version. They will also validate your updates with benchmark simulations.

11. If the benchmark simulations reveal a problem with your update, the GCST will request that you take further
corrective action.

29.3.2 Coding conventions

The GEOS-Chem codebase dates back several decades and includes contributions from many people and multiple or-
ganizations. Therefore, some inconsistent conventions are inevitable, but we ask that you do your best to be consistent
with nearby code.

29.3.3 Checklist for submitting code updates

1. Use Fortran-90 free format instead of Fortran-77 fixed format.

2. Include thorough comments in all submitted code.

3. Include full citations for references at the top of relevant source code modules.

4. Remove extraneous code updates (e.g. testing options, other science).

5. Submit any related code or configuration files for GCHP along with code or configuration files for GEOS-Chem
Classic.

29.3.4 Checklist for submitting data files

1. Choose a final file naming convention before submitting data files for inclusion to GEOS-Chem.

2. Make sure that all netCDF files adhere to the COARDS conventions.

3. Concatenate netCDF files to reduce the number of files that need to be opened. This results in more efficient I/O
operations.

4. Chunk and deflate netCDF files in order to improve file I/O.

5. Include an updated HEMCO configuration file corresponding to the new data.

162 Chapter 29. Contributing Guidelines

http://wiki.geos-chem.org/GEOS-Chem_model_development_priorities
https://github.com/
https://help.github.com/articles/fork-a-repo/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://help.github.com/articles/creating-a-pull-request/
https://wiki.geos-chem.org/GEOS-Chem_Support_Team
https://wiki.geos-chem.org/GEOS-Chem_benchmarking
https://gchp.readthedocs.io
https://geos-chem.readthedocs.io
https://geos-chem.readthedocs.io
https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/coards-guide.html
https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/netcdf-guide.html#concatenate-netcdf-files
https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/netcdf-guide.html#chunk-and-deflate-a-netcdf-file-to-improve-i-o
https://hemco.readthedocs.io/en/latest/hco-ref-guide/hemco-config.html

GCHP, Release 14.2.0

6. Include a README file detailing data source, contents, etc.

7. Include script(s) used to process original data

8. Include a summary or description of the expected results (e.g. emission totals for each species)

Also follow these additional steps to ensure that your data can be read by GCHP:

1. All netCDF data variables should be of type float (aka REAL*4) or double (aka REAL*8).

2. Use a recent reference datetime (i.e. after 1900-01-01) for the netCDF time:units attribute.

3. The first time value in each file should be 0, corresponding with the reference datetime.

29.4 How can I request a new feature?

We accept feature requests through issues on GitHub. To request a new feature, open a new issue and select the feature
request template. Please include all the information that migth be relevant, including the motivation for the feature.

29.5 How can I report a bug?

Please see Support Guidelines.

29.6 Where can I ask for help?

Please see Support Guidelines.

29.4. How can I request a new feature? 163

https://github.com/geoschem/GCHP/issues/new/choose
https://gchp.readthedocs.io/en/latest/reference/SUPPORT.html
https://gchp.readthedocs.io/en/latest/reference/SUPPORT.html

GCHP, Release 14.2.0

164 Chapter 29. Contributing Guidelines

CHAPTER

THIRTY

EDITING THIS USER GUIDE

This user guide is generated with Sphinx. Sphinx is an open-source Python project designed to make writing software
documentation easier. The documentation is written in a reStructuredText (it’s similar to markdown), wh ich Sphinx
extends for software documentation. The source for the documentation is the docs/source directory in top-level
of the source code.

30.1 Quick start

To build this user guide on your local machine, you need to install Sphinx and its dependencies. Sphinx is a Python 3
package and it is available via pip. This user guide uses the Read The Docs theme, so you will also need to install
sphinx-rtd-theme. It also uses the sphinxcontrib-bibtex and recommonmark extensions, which you’ll need to
install.

$ cd docs
$ pip install -r requirements.txt

To build this user guide locally, navigate to the docs/ directory and make the html target.

$ make html

This will build the user guide in docs/build/html, and you can open index.html in your web-browser. The
source files for the user guide are found in docs/source.

Note: You can clean the documentation with make clean.

30.2 Learning reST

Writing reST can be tricky at first. Whitespace matters, and some directives can be easily miswritten. Two important
things you should know right away are:

• Indents are 3-spaces

• “Things” are separated by 1 blank line. For example, a list or code-block following a paragraph should be
separated from the paragraph by 1 blank line.

You should keep these in mind when you’re first getting started. Dedicating an hour to learning reST will save you
time in the long-run. Below are some good resources for learning reST.

• reStructuredText primer: (single best resource; however, it’s better read than skimmed)

165

https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex/
https://recommonmark.readthedocs.io/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

GCHP, Release 14.2.0

• Official reStructuredText reference (there is a lot of information here)

• Presentation by Eric Holscher (co-founder of Read The Docs) at DjangoCon US 2015 (the entire presentation
is good, but reST is described from 9:03 to 21:04)

• YouTube tutorial by Audrey Tavares

A good starting point would be Eric Holscher’s presentations followed by the reStructuredText primer.

30.3 Style guidelines

Important: This user guide is written in semantic markup. This is important so that the user guide remains maintain-
able. Before contributing to this documentation, please review our style guidelines (below). When editing the source,
please refrain from using elements with the wrong semantic meaning for aesthetic reasons. Aesthetic issues can be
addressed by changes to the theme.

For titles and headers:

• Section headers should be underlined by # characters

• Subsection headers should be underlined by - characters

• Subsubsection headers should be underlined by ^ characters

• Subsubsubsection headers should be avoided, but if necessary, they should be underlined by " characters

File paths (including directories) occuring in the text should use the :file: role.

Program names (e.g. cmake) occuring in the text should use the :program: role.

OS-level commands (e.g. rm) occuring in the text should use the :command: role.

Environment variables occuring in the text should use the :envvar: role.

Inline code or code variables occuring in the text should use the :code: role.

Code snippets should use .. code-block:: <language> directive like so

.. code-block:: python

import gcpy
print("hello world")

The language can be “none” to omit syntax highlighting.

For command line instructions, the “console” language should be used. The $ should be used to denote the console’s
prompt. If the current working directory is relevant to the instructions, a prompt like $~/path1/path2$ should be
used.

Inline literals (e.g. the $ above) should use the :literal: role.

166 Chapter 30. Editing this User Guide

https://docutils.sourceforge.io/docs/user/rst/quickref.html
https://www.youtube.com/watch?v=eWNiwMwMcr4
https://www.youtube.com/watch?v=DSIuLnoKLd8

CHAPTER

THIRTYONE

GIT SUBMODULES

31.1 Forking submodules

This sections describes updating git submodules to use your own forks. You can update submodule so that they use
your forks at any time. It is recommended you only update the submodules that you need to, and that you leave
submodules that you don’t need to modify pointing to the GEOS-Chem repositories.

The rest of this section assumes you are in the top-level of GCHP, i.e.,

$ cd GCHP # navigate to top-level of GCHP

First, identify the submodules that you need to modify. The .gitmodules file has the paths and URLs to the
submodules. You can see it with the following command

$ cat .gitmodules
[submodule "src/MAPL"]

path = src/MAPL
url = https://github.com/sdeastham/MAPL

[submodule "src/GMAO_Shared"]
path = src/GMAO_Shared
url = https://github.com/geoschem/GMAO_Shared

[submodule "ESMA_cmake"]
path = ESMA_cmake
url = https://github.com/geoschem/ESMA_cmake

[submodule "src/gFTL-shared"]
path = src/gFTL-shared
url = https://github.com/geoschem/gFTL-shared.git

[submodule "src/FMS"]
path = src/FMS
url = https://github.com/geoschem/FMS.git

[submodule "src/GCHP_GridComp/FVdycoreCubed_GridComp"]
path = src/GCHP_GridComp/FVdycoreCubed_GridComp
url = https://github.com/sdeastham/FVdycoreCubed_GridComp.git

[submodule "src/GCHP_GridComp/GEOSChem_GridComp/geos-chem"]
path = src/GCHP_GridComp/GEOSChem_GridComp/geos-chem
url = https://github.com/sdeastham/geos-chem.git

[submodule "src/GCHP_GridComp/HEMCO_GridComp/HEMCO"]
path = src/GCHP_GridComp/HEMCO_GridComp/HEMCO
url = https://github.com/geoschem/HEMCO.git

Once you know which submodules you need to update, fork each of them on GitHub.

Once you have your own forks for the submodules that you are going to modify, update the submodule URLs in
.gitmodules

167

GCHP, Release 14.2.0

$ git config -f .gitmodules -e # opens editor, update URLs for your forks

Synchronize your submodules

$ git submodule sync

Add and commit the update to .gitmodules.

$ git add .gitmodules
$ git commit -m "Updated submodules to use my own forks"

Now, when you push to your GCHP fork, you should see the submodules point to your submodule forks.

168 Chapter 31. Git Submodules

CHAPTER

THIRTYTWO

TERMINOLOGY

absolute path The full path to a file, e.g., /example/foo/bar.txt. An absolute path should always start with
/. As opposed to a relative path.

build See compile.

build directory A directory where build configuration settings are stored, and where intermediate build files like
object files, module files, and libraries are stored.

checkpoint file See restart file.

compile Generating an executable program from source code (which is in a plain-text format).

dependencies The software libraries that are needed to compile GCHP. These include HDF5, NetCDF, and ESMF.
See Software Requirements for a complete list.

environment The software packages and software configuration that are active in your current terminal or script.
In Linux, the $HOME/.bashrc script performs automatic configuration when your terminal starts. You can
manually configure your environment by running commands like source path_to_a_script or with
tools like TCL or LMod for modulefiles. Software containers are effectively a prepackaged operating system +
software + environment.

gridded component A formal model component. MAPL organizes model components with a tree structure, and
facilitates component interconnections.

HISTORY The MAPL gridded component that handles model output. All GCHP output diagnostics are facilitated
by HISTORY.

relative path The path to a file relative to the current working directory. For example, the relative path to /
example/foo/bar.txt if your current working directory is /example is foo/bar.txt. As opposed
to an absolute path.

restart file A NetCDF file with initial conditions for a simulation. Also called a checkpoint file in GCHP.

run directory The working directory for a GEOS-Chem simulation. A run directory houses the simulation’s configu-
ration files, the output directory (OutputDir), and input files/links such as restart files or input data directories.

script A file that scripts a sequence of commands. Typically a bash that is written to execute a sequence of commands.

software environment See environment.

stretched-grid A cubed-sphere grid that is “stretched” to enhance the grid resolution in a region.

target face The face of a stretched-grid that is refined. The target face is centered on the target point.

terminal A command-line.

169

https://en.wikipedia.org/wiki/Tree_structure

GCHP, Release 14.2.0

170 Chapter 32. Terminology

CHAPTER

THIRTYTHREE

GCHP VERSION HISTORY

For a list of updates by GCHP version, please see:

• CHANGELOG.md for the GEOS-Chem science codebase

• CHANGELOG.md for the GCHP wrapper

• CHANGELOG.md for HEMCO

171

https://github.com/geoschem/geos-chem/blob/main/CHANGELOG.md
https://github.com/geoschem/GCHP/blob/main/CHANGELOG.md
https://github.com/geoschem/HEMCO/blob/main/CHANGELOG.md

GCHP, Release 14.2.0

172 Chapter 33. GCHP version history

CHAPTER

THIRTYFOUR

UPLOAD TO SPACK

This page describes how to upload recipe changes to Spack. Common recipe changes include updating available
versions of GCHP and changing version requirements for dependencies.

1. Create a fork of https://github.com/spack/spack.git and clone your fork.

2. Change your SPACK_ROOT environment variable to point to the root directory of your fork clone.

3. Create a descriptive branch name in the clone of your fork and checkout that branch.

4. Make any changes to $SPACK_ROOT/var/spack/repos/builtin/packages/package_name/ as
desired.

5. Install Flake8 and mypy using conda install flake8 and conda install mypy if you don’t al-
ready have these packages.

6. Run Spack’s style tests using spack style, which will conduct tests in $SPACK_ROOT using Flake8 and
mypy.

7. (Optional) Run Spack’s unit tests using spack unit-test. These tests may take a long time to run. The
unit tests will always be run when you submit your PR, and the unit tests primarily test core Spack features
unrelated to specific packages, so you don’t usually need to run these manually.

8. Prefix your commit messages with the package name, e.g. gchp: added version 13.1.0.

9. Push your commits to your fork.

10. Create a PR targetted to the develop branch of the original Spack repository, prefixing the PR title with the
package name, e.g. gchp: added version 13.1.0.

173

https://github.com/spack/spack.git

GCHP, Release 14.2.0

174 Chapter 34. Upload to Spack

BIBLIOGRAPHY

[Bey et al., 2001] Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu,
H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated
meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001.
doi:10.1029/2001JD000807.

[Bindle et al., 2021] Bindle, L., Martin, R. V., Cooper, M. J., Lundgren, E. W., Eastham, S. D., Auer, B. M., Clune,
T. L., Weng, H., Lin, J., Murray, L. T., Meng, J., Keller, C. A., Putman, W. M., Pawson, S., and Jacob, D. J.
Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model. Geosci. Model Dev.,
14(10):5977–5997, 2021. doi:10.5194/gmd-14-5977-2021.

[Eastham et al., 2018] Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang, J., Li,
C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson, M. A.,
Trayanov, A. L., Molod, A. M., Martin, R. V., and Jacob, D. J. GEOS-Chem High Performance (GCHP
v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively
parallel applications. Geoscientific Model Development, 11(7):2941–2953, July 2018. doi:10.5194/gmd-
11-2941-2018.

[Keller et al., 2014] Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO
v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci.
Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014.

[Lin et al., 2023] Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob,
D. J. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric
chemistry models: implementation and evaluation within the Kinetic Pre-Processor (KPP) version 3.0.0. J.
Adv. Model. Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS003293.

[Lin et al., 2021] Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4,
S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized Emissions
Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the
GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geosci.
Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021.

[Long et al., 2015] Long, M.S., and. J.E. Nielsen, R. Y., Keller, C.A., da Silva, A., Sulprizio, M.P., Pawson, S.,
and Jacob, D.J. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an
atmospheric chemistry module for Earth system models. Geosci. Model Dev., 8(3):595–602, March 2015.
doi:10.5194/gmd-8-595-2015.

[Luo et al., 2020] Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in GEOS-
Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev.,
13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020.

[Martin et al., 2022] Martin, R. V., Eastham, S. D., Bindle, L., Lundgren, E. W., Clune, T. L., Keller, C. A., Downs,
W., Zhang, D., Lucchesi, R. A., Sulprizio, M. P., Yantosca, R. M., Li, Y., Estrada, L., Putman, W. M.,
Auer, B. M., Trayanov, A. L., Pawson, S., and Jacob, D. J. Improved Advection, Resolution, Performance,

175

https://doi.org/10.1029/2001JD000807
https://doi.org/10.5194/gmd-14-5977-2021
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.1029/2022MS003293
https://doi.org/0.5194/gmd-14-5487-2021
https://doi.org/10.5194/gmd-8-595-2015
https://doi.org/10.5194/gmd-13-2879-2020

GCHP, Release 14.2.0

and Community Access in the New Generation (Version 13) of the High Performance GEOS-Chem Global
Atmospheric Chemistry Model (GCHP). Geosci. Model Dev. Discuss., 2022:1–30, 2022. doi:10.5194/gmd-
2022-42.

[Trivitayanurak et al., 2008] Trivitayanurak, W., Adams, P., Spracklen, D., and Carslaw, K. Tropospheric aerosol mi-
crophysics simulation with assimilated meteorology: model description and intermodel comparison. Atmos.
Chem. Phys., 8:3149–3168, 2008.

[Yu and Luo 2009] Yu, F. and Luo, G. Simulation of particle size distribution with a global aerosol model: Contri-
bution of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys., 9(7):7691–7710,
2009.

[Zhuang et al., 2020] Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sulprizio, M. P.,
and Eastham, S. D. Enabling High-Performance Cloud Computing for Earth Science Modeling on Over a
Thousand Cores: Application to the GEOS-Chem Atmospheric Chemistry Model. Journal of Advances in
Modeling Earth Systems, May 2020. doi:10.1029/2020MS002064.

176 Bibliography

https://doi.org/10.5194/gmd-2022-42
https://doi.org/10.5194/gmd-2022-42
https://doi.org/10.1029/2020MS002064

INDEX

Symbols
$PATH, 72
${HOME}, 72

A
absolute path, 169
all

command line option, 136–138
allPES.log

command line option, 57

B
BackgroundVV

command line option, 140
batch job file

command line option, 57
boundary_layer

command line option, 137
build, 169
build directory, 169

C
cap_restart

command line option, 57
CC, 19
checkpoint file, 169
command line option

all, 136–138
allPES.log, 57
BackgroundVV, 140
batch job file, 57
boundary_layer, 137
cap_restart, 57
constant, 136, 137
DD_AeroDryDep, 133
DD_DustDryDep, 133
DD_DvzAerSnow, 133
DD_DvzAerSnow_Luo, 133
DD_DvzMinVal, 133
DD_F0, 134
DD_Hstar_Old, 134
DD_KOA, 134

decay_of_another_species, 137
Density, 133
e.g. slurm-jobid.out, 57
efolding, 136
EGRESS, 58
Formula, 132
FullName, 132
gcchem_internal_checkpoint.YYYYMMDD_HHmmz.nc4,

58
gchp.YYYYMMSS_HHmmSSz.log, 57
halflife, 136
HEMCO, 137
Henry_CR, 133
Henry_CR_Luo, 133
Henry_K0, 133
Henry_K0_Luo, 133
Henry_pKa, 133
HistoryCollectionName.rcx, 58
Is_Advected, 132
Is_Aerosol, 132
Is_DryAlt, 132
Is_DryDep, 132
Is_Gas, 132
Is_Hg0, 132
Is_Hg2, 132
Is_HgP, 132
Is_HygroGrowth, 132
Is_Photolysis, 132
Is_RadioNuclide, 132
Is_Tracer, 136
lat_zone, 136, 137
logfile.000000.out, 57
maintain_mixing_ratio, 137
module load cmake/..., 68
module load gcc/..., 68
module load git/..., 68
module load netcdf/.., 68
module load openmpi/..., 68
module load perl/..., 68
module purge, 68
MP_SizeResAer, 140
MP_SizeResNum, 140

177

GCHP, Release 14.2.0

MW_g, 133
Name, 132
none, 136, 137
OutputDir/GEOSChem.HistoryCollectionName.YYYYMMDD_HHmmz.nc4,

58
ppbv, 137
pressures, 138
Radius, 133
Restarts/GEOSChem.Restart.YYYYMMDD_HHmmz.cN.nc4,

58
Snk_Horiz, 136
Snk_Lats, 136
Snk_Mode, 136
Snk_Period, 136
Snk_Value, 136
Snk_Vert, 137
Src_Add, 137
Src_Horiz, 137
Src_Lats, 137
Src_Mode, 137
Src_Pressures, 138
Src_Unit, 137
Src_Value, 137
Src_Vert, 137
stratosphere, 138
surface, 137, 138
timestep, 137
troposphere, 137, 138
Units, 138
warnings_and_errors.log, 58
WD_AerScavEff, 135
WD_CoarseAer, 134
WD_ConvFacI2G, 134
WD_ConvFacI2G_Luo, 134
WD_Is_H2SO4, 134
WD_Is_HNO3, 134
WD_Is_SO2, 134
WD_KcScaleFac, 135
WD_KcScaleFac_Luo, 135
WD_LiqAndGas, 134
WD_RainoutEff, 135
WD_RainoutEff_Luo, 136
WD_RetFactor, 135

compile, 169
constant

command line option, 136, 137
CS_RES, 92
CXX, 19

D
DD_AeroDryDep

command line option, 133
DD_DustDryDep

command line option, 133

DD_DvzAerSnow
command line option, 133

DD_DvzAerSnow_Luo
command line option, 133

DD_DvzMinVal
command line option, 133

DD_F0
command line option, 134

DD_Hstar_Old
command line option, 134

DD_KOA
command line option, 134

decay_of_another_species
command line option, 137

Density
command line option, 133

dependencies, 169

E
e.g. slurm-jobid.out

command line option, 57
efolding

command line option, 136
EGRESS

command line option, 58
environment, 169
environment variable

$PATH, 72
${HOME}, 72
CC, 19
CS_RES, 92
CXX, 19
FC, 19
GC_DATA_ROOT, 23
model, 73
scope_args, 73
scope_dir, 73
SPACK_ROOT, 72
STRETCH_FACTOR, 92
STRETCH_GRID, 92
TARGET_LAT, 92
TARGET_LON, 92

F
FC, 19
Formula

command line option, 132
FullName

command line option, 132

G
GC_DATA_ROOT, 23
gcchem_internal_checkpoint.YYYYMMDD_HHmmz.nc4

command line option, 58

178 Index

GCHP, Release 14.2.0

gchp.YYYYMMSS_HHmmSSz.log
command line option, 57

gridded component, 169

H
halflife

command line option, 136
HEMCO

command line option, 137
Henry_CR

command line option, 133
Henry_CR_Luo

command line option, 133
Henry_K0

command line option, 133
Henry_K0_Luo

command line option, 133
Henry_pKa

command line option, 133
HISTORY, 169
HistoryCollectionName.rcx

command line option, 58

I
Is_Advected

command line option, 132
Is_Aerosol

command line option, 132
Is_DryAlt

command line option, 132
Is_DryDep

command line option, 132
Is_Gas

command line option, 132
Is_Hg0

command line option, 132
Is_Hg2

command line option, 132
Is_HgP

command line option, 132
Is_HygroGrowth

command line option, 132
Is_Photolysis

command line option, 132
Is_RadioNuclide

command line option, 132
Is_Tracer

command line option, 136

L
lat_zone

command line option, 136, 137
logfile.000000.out

command line option, 57

M
maintain_mixing_ratio

command line option, 137
model, 73
module load cmake/...

command line option, 68
module load gcc/...

command line option, 68
module load git/...

command line option, 68
module load netcdf/..

command line option, 68
module load openmpi/...

command line option, 68
module load perl/...

command line option, 68
module purge

command line option, 68
MP_SizeResAer

command line option, 140
MP_SizeResNum

command line option, 140
MW_g

command line option, 133

N
Name

command line option, 132
none

command line option, 136, 137

O
OutputDir/GEOSChem.HistoryCollectionName.YYYYMMDD_HHmmz.nc4

command line option, 58

P
ppbv

command line option, 137
pressures

command line option, 138

R
Radius

command line option, 133
relative path, 169
restart file, 169
Restarts/GEOSChem.Restart.YYYYMMDD_HHmmz.cN.nc4

command line option, 58
run directory, 169

S
scope_args, 73
scope_dir, 73

Index 179

GCHP, Release 14.2.0

script, 169
Snk_Horiz

command line option, 136
Snk_Lats

command line option, 136
Snk_Mode

command line option, 136
Snk_Period

command line option, 136
Snk_Value

command line option, 136
Snk_Vert

command line option, 137
software environment, 169
SPACK_ROOT, 72
Src_Add

command line option, 137
Src_Horiz

command line option, 137
Src_Lats

command line option, 137
Src_Mode

command line option, 137
Src_Pressures

command line option, 138
Src_Unit

command line option, 137
Src_Value

command line option, 137
Src_Vert

command line option, 137
stratosphere

command line option, 138
STRETCH_FACTOR, 92
STRETCH_GRID, 92
stretched-grid, 169
surface

command line option, 137, 138

T
target face, 169
TARGET_LAT, 92
TARGET_LON, 92
terminal, 169
timestep

command line option, 137
troposphere

command line option, 137, 138

U
Units

command line option, 138

W
warnings_and_errors.log

command line option, 58
WD_AerScavEff

command line option, 135
WD_CoarseAer

command line option, 134
WD_ConvFacI2G

command line option, 134
WD_ConvFacI2G_Luo

command line option, 134
WD_Is_H2SO4

command line option, 134
WD_Is_HNO3

command line option, 134
WD_Is_SO2

command line option, 134
WD_KcScaleFac

command line option, 135
WD_KcScaleFac_Luo

command line option, 135
WD_LiqAndGas

command line option, 134
WD_RainoutEff

command line option, 135
WD_RainoutEff_Luo

command line option, 136
WD_RetFactor

command line option, 135

180 Index

	Quickstart Guide
	System Requirements
	Key References
	Download the model
	Compile
	Create a Run Directory
	Download Input Data
	Run the model
	Configuration files
	Configure a run
	Output Files
	Plot Output Data
	Debugging
	Load software into your environment
	Build required software with Spack
	Set up AWS ParallelCluster
	Cache Input Data on Fast Drives
	Use GCHP Containers
	Stretched-Grid Simulation
	Output Along a Track
	Manage a data archive with bashdatacatalog
	Customize simulations with research options
	Understand what error messages mean
	Debug GEOS-Chem and HEMCO errors
	View GEOS-Chem species properties
	Update chemical mechanisms with KPP
	View related documentation
	Support Guidelines
	Contributing Guidelines
	Editing this User Guide
	Git Submodules
	Terminology
	GCHP version history
	Upload to Spack
	Bibliography
	Index

