
GCHP
Release 14.3.0

GEOS-Chem Support Team

Apr 04, 2024

GETTING STARTED

1 Quickstart Guide 3

2 System Requirements 7

3 Key References 13

4 Download the model 15

5 Compile 17

6 Create a Run Directory 23

7 Download Input Data 27

8 Run the model 31

9 Configuration files 35

10 Configure a run 51

11 Output Files 59

12 Plot Output Data 63

13 Debugging 67

14 Load software into your environment 71

15 Build required software with Spack 75

16 Set up AWS ParallelCluster 83

17 Cache Input Data on Fast Drives 87

18 Use GCHP Containers 91

19 Stretched-Grid Simulation 95

20 Output Along a Track 101

21 Manage a data archive with bashdatacatalog 105

22 Archive output with the History diagnostics 107

i

23 Work with netCDF files 155

24 Prepare COARDS-compliant netCDF files 171

25 Customize simulations with research options 181

26 Understand what error messages mean 189

27 Debug GEOS-Chem and HEMCO errors 205

28 View GEOS-Chem species properties 211

29 Update chemical mechanisms with KPP 225

30 View related documentation 237

31 Support Guidelines 239

32 Contributing Guidelines 241

33 Editing this User Guide 245

34 Git Submodules 247

35 Terminology 249

36 GCHP version history 251

37 Upload to Spack 253

Bibliography 255

Index 257

ii

GCHP, Release 14.3.0

The GEOS–Chem model is a global 3-D model of atmospheric composition driven by assimilated meteorological
observations from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation
Office. It is applied by research groups around the world to a wide range of atmospheric composition problems.

• GEOS-Chem Overview

• Narrative description of GEOS-Chem

This site provides instructions for GEOS-Chem High Performance, GEOS-Chem’s multi-node variant. We provide two
different instruction sets for downloading and compiling GCHP: from a clone of the source code, or using the Spack
package manager.

Cloning and building from source code ensures you will have direct access to the latest available versions of GCHP,
provides additional compile-time options, and allows you to make your own modifications to GCHP’s source code.
Spack automates downloading and additional parts of the compiling process while providing you with some standard
togglable compile-time options.

Our Quick Start Guide and the downloading, compiling, and creating a run directory sections of the User Guide give
instructions specifically for using a clone of the source code. Our dedicated Spack guide describes how to install GCHP
and create a run directory with Spack, as well as how to use Spack to install GCHP’s dependencies if needed.

GETTING STARTED 1

http://geos-chem.org/
http://gmao.gsfc.nasa.gov/
http://gmao.gsfc.nasa.gov/
http://acmg.seas.harvard.edu/geos/geos_people.html
http://geos-chem.org/geos-overview
http://geos-chem.org/geos-chem-narrative
getting-started/quick-start.html
user-guide/downloading.html
user-guide/compiling.html
user-guide/rundir-init.html
supplement/spack.html

GCHP, Release 14.3.0

2 GETTING STARTED

CHAPTER

ONE

QUICKSTART GUIDE

This quickstart guide assumes your environment satisfies the requirements described in System Requirements. This
means you should load a compute environment so that programs like cmake and mpirun are available before continuing.
If you do not have some of GCHP’s software dependencies, you can find instructions for installing GCHP’s external
dependencies in our Spack instructions. More detailed instructions on downloading, compiling, and running GCHP
can be found in the User Guide.

1.1 1. Clone GCHP

Download the source code. The --recurse-submodules option will automatically initialize and update all the sub-
modules:

gcuser:~$ git clone --recurse-submodules https://github.com/geoschem/GCHP.git ~/GCHP
gcuser:~$ cd ~/GCHP

Upon download you will have the most recently released version. You can check what this is by printing the last commit
in the git log and scanning the output for tag.

gcuser:~/GCHP$ git log -n 1

Tip: To use an older GCHP version (e.g. 14.0.0), follow these additional steps:

gcuser:~/GCHP$ git checkout tags/14.0.0 # Points HEAD to the tag "14.0.0
→˓"
gcuser:~/GCHP$ git branch version_14.0.0 # Creates a new branch at tag
→˓"14.0.0"
gcuser:~/GCHP$ git checkout version_14.0.0 # Checks out the version_14.0.0␣
→˓branch
gcuser:~/GCHP$ git submodule update --init --recursive # Reverts submodules to the "14.
→˓0.0" tag

You can do this for any tag in the version history. For a list of all tags, type:

gcuser:~/GCHP$ git tag

If you have any unsaved changes, make sure you commit those to a branch prior to updating versions.

3

../supplement/spack.html

GCHP, Release 14.3.0

1.2 2. Create a run directory

Navigate to the run/ subdirectory. To create a run directory, run ./createRunDir.sh and answer the prompts:

gcuser:~/GCHP$ cd run/
gcuser:~/GCHP$./createRunDir.sh

1.3 3. Configure your build

Building GCHP will require 1.4G of storage space. You may build GCHP from within the run directory or from
anywhere else on your system. Building from within the run directory is convenient because it keeps all build files in
close proximity to where you will run GCHP. For this purpose the GCHP run directory includes a build directory called
build/. However, you can create a build directory elsewhere, such as within the GCHP source code. In this guide we
will do both, starting with building from the source code.

gcuser:~/GCHP$ mkdir ~/GCHP/build
gcuser:~/GCHP$ cd ~/GCHP/build

Initialize your build directory by running cmake, passing it the path to your source code. Make sure you have loaded
all libraries required for GCHP prior to this step.

gcuser:~/GCHP/build$ cmake ~/GCHP

Now you can configure build options. These are persistent settings that are saved to your build directory. A useful build
option is -DRUNDIR. This option lets you specify one or more run directories that GCHP is “installed” to, meaning where
the executable is copied, when you do make install. Configure your build so it installs GCHP to the run directory
you created in Step 2.

gcuser:~/GCHP/build$ cmake . -DRUNDIR="/path/to/your/run/directory"

Note: The . in the cmake command above is important. It tells CMake that your current working directory (i.e., .) is
your build directory.

If you decide instead to build GCHP in your run directory you can do all of the above in one step. This makes use of
the CodeDir symbolic link in the run directory:

gcuser:/path/to/your/run/directory/$ cd build
gcuser:/path/to/your/run/directory/build$ cmake ../CodeDir -DRUNDIR=..

GEOS-Chem has a number of optional compiler flags you can add here. For example, to compile with RRTMG:

gcuser:/path/to/your/run/directory/build$ cmake ../CodeDir -DRUNDIR=.. -DRRTMG=y

A useful compiler option is to build in debug mode. Doing this is a good idea if you encountered a segmentation fault
in a previous run and need more information about where the error happened and why.

gcuser:/path/to/your/run/directory/build$ cmake ../CodeDir -DRUNDIR=.. -DCMAKE_BUILD_
→˓TYPE=Debug

See the GEOS-Chem documentation for more information on compiler flags.

4 Chapter 1. Quickstart Guide

GCHP, Release 14.3.0

1.4 4. Compile and install

Compiling GCHP takes about 20 minutes, but it can vary depending on your system, your compiler, and your compiler
flags. To maximize build speed you should compile GCHP in parallel using as many cores as are available. Do this
with the -j flag:

gcuser:~/GCHP/build$ make -j

Upon successful compilation, install the compiled executable to your run directory (or directories):

gcuser:~/GCHP/build$ make install

This copies bin/gchp and supplemental files to your run directory.

Note: You can update build settings at any time:

1. Navigate to your build directory.

2. Update your build settings with cmake (only if they differ since your last execution of cmake)

3. Recompile with make -j. Note that the build system automatically figures out what (if any) files need to be
recompiled.

4. Install the rebuilt executable with make install.

If you do not install the executable to your run directory you can always get the executable from the directory build/
bin.

1.5 5. Configure your run directory

Now, navigate to your run directory:

$ cd path/to/your/run/directory

Commonly changed simulation settings, such as grid resolution, run duration, and number of cores, are
set in setCommonRunSettings.sh. You should review this file as it explains most settings. Note that
setCommonRunSettings.sh is actually a helper script that updates other configuration files. You therefore need
to run it to actually apply the settings:

$ vim setCommonRunSettings.sh # edit simulation settings here
$./setCommonRunSettings.sh # applies the updated settings

Simulation start date is set in cap_restart. Run directories come with this file filled in based on date of the initial
restart file in subdirectory Restarts. You can change the start date only if you have a restart file for the new date in
Restarts. A symbolic link called gchp_restart.nc4 points to the restart file for the date in cap_restart and the
grid resolution in setCommonRunSettings.sh. You need to set this symbolic link before running:

$./setRestartLink.sh # sets symbolic link to target file in Restarts

If you used an environment file to load libraries prior to building GCHP then you should load that file prior to running.
A simple way to make sure you always use the correct combination of libraries is to set the GCHP environment symbolic
link gchp.env in the run directory:

1.4. 4. Compile and install 5

GCHP, Release 14.3.0

$./setEnvironment.sh /path/to/env/file # sets symbolic link gchp.env
$ source gchp.env # applies the environment settings

1.6 6. Run GCHP

Running GCHP is slightly different depending on your MPI library (e.g., OpenMPI, Intel MPI, MVAPICH2, etc.) and
scheduler (e.g., SLURM, LSF, etc.). If you aren’t familiar with running MPI programs on your system, see Running
GCHP in the user guide, or ask your system administrator.

Your MPI library and scheduler will have a command for launching MPI programs—it’s usually something like mpirun,
mpiexec, or srun. This is the command that you will use to launch the gchp executable. You’ll have to refer to your
system’s documentation for specific instructions on running MPI programs, but generally it looks something like this:

$ mpirun -np 6 ./gchp # example of running GCHP with 6 slots with OpenMPI

It’s recommended you run GCHP as a batch job. This means that you write a script (usually bash) that configures
and runs your GCHP simulation, and then you submit that script to your local job scheduler (SLURM, LSF, etc.).
Example job scripts are provided in subdirectory ./runScriptSamples in the run directory. That folder also includes
an example script for running GCHP from the command line.

Several steps beyond running GCHP are included in the example run scripts. These include loading the environment,
updating commonly changed run settings, and setting the restart file based on start time and grid resolution. In addition,
the output restart file is moved to the Restarts subdirectory and renamed to include start date and grid resolution upon
successful completion of the run.

Note: File cap_restart is over-written to contain the run end date upon successful completion of a GCHP run. This
is done within GCHP and not by the run script. You can then easily submit a new GCHP run starting off where your
last run left off. In addition, GCHP outputs a restart file to your run directory called gcchem_internal_checkpoint.
This file is moved to subdirectory Restarts and renamed to include the date and grid resolution. This is done by the
run script and technically is optional. We recommend doing this since it is is good for archiving (restart files will contain
date and grid res) and enables use of the ./setRestartLink.sh script to set the gchp_restart.nc4 symbolic link.

Those are the basics of using GCHP! See the user guide, step-by-step guides, and reference pages for more detailed
instructions.

6 Chapter 1. Quickstart Guide

CHAPTER

TWO

SYSTEM REQUIREMENTS

2.1 Software Requirements

To build and run GCHP your compute environment needs the following software:

• Git

• Make (or GNUMake)

• CMake version 3.13

• Compilers (C, C++, and Fortran):

– Intel compilers version 19, or

– GNU compilers version 10

• MPI (Message Passing Interface)

– OpenMPI 4.0, or

– IntelMPI, or

– MVAPICH2, or

– MPICH, or

– other MPI libraries might work too

• HDF5

• NetCDF (with C, C++, and Fortran support)

• Earth System Modeling Framework (ESMF) version 8.4.2 recommended. Problems with 8.1 and prior have been
reported.

Your system administrator should be able to tell you if this software is already available on your cluster, and if so,
how to activate it. If it is not already available, they might be able to build it for you. If you need to build GCHP’s
dependencies yourself, see the supplemental guide for building required software with Spack.

7

GCHP, Release 14.3.0

2.1.1 Installing ESMF

If you have all of the needed libraries except ESMF then you can download and build ESMF yourself. The ESMF git
repository is available to clone from github.com/esmf-org/esmf. Use git tag to browse versions available and then
git checkout tags/tag_name to checkout the version.

git clone https://github.com/esmf-org/esmf ESMF
cd ESMF
git tag
git checkout tags/v8.4.1

If you have previously downloaded ESMF you can use your same clone to checkout and build a new ESMF version.
Use the same steps as above minus the first step of cloning.

Once you have downloaded ESMF and checked out the version you would like to build, browse the file ESMF/README.
md to familiarize yourself with ESMF documentation. You do not need to visit the documentation for doing a basic
build of ESMF following this tutorial. However, if you are interested in learning more about ESMF and its options then
you can use this guide.

ESMF requires that you define environment variables ESMF_COMPILER, ESMF_COMM, and ESMF_DIR, and also export
environment variables CC, CXX, FC, and MPI_ROOT. Set up an environment file that loads the needed libraries and also
defines these environment variables. If you already have a GEOS-Chem environment file set up then you can copy it
or repurpose it by including the environment variables needed for ESMF. Here is an example of what the library load
and variable exports might look line in your environment file. This example uses GNU compilers and OpenMPI, but
there are notes in the comments on how to use Intel instead.

module purge
module load gcc/10.2.0-fasrc01 # GNU compiler collection (C, C++, Fortran)
module load openmpi/4.1.0-fasrc01 # MPI
module load netcdf-c/4.8.0-fasrc01 # Netcdf-C
module load netcdf-fortran/4.5.3-fasrc01 # Netcdf-Fortran
module load cmake/3.25.2-fasrc01 # CMake

export CC=gcc # C compiler (use icx for Intel)
export CXX=g++ # C++ compiler (se icx for Intel)
export FC=gfortran # Fortran compiler (use ifort for Intel)
export MPI_ROOT=${MPI_HOME} # Path to MPI library
export ESMF_COMPILER=gfortran # Fortran compiler (use intel for Intel)
export ESMF_COMM=openmpi # MPI (use intelmpi for IntelMPI)
export ESMF_DIR=/home/ESMF/ESMF # Path to ESMF repository within a generic␣
→˓directory called ESMF

You can create multiple ESMF builds. This is useful if you want to use different libraries for the same version of ESMF,
or if you want to build different ESMF versions. To set yourself up to allow multiple builds you should also export
environment variable ESMF_INSTALL_PREFIX and define it as a subdirectory within ESMF_DIR. Include details about
that particular build to distinguish it from others. For example:

export ESMF_INSTALL_PREFIX=${ESMF_DIR}/INSTALL_ESMF8.4.1_gfortran10.2_openmpi4.1

Using this install in GCHP will require setting ESMF_ROOT to the install directory. Add the following line to your
ESMF environment file if you plan on repurposing it for use with GCHP. Otherwise remember to add it to your GCHP
environment file along with the assignment of ESMF_INSTALL_PREFIX.

export ESMF_ROOT=${ESMF_INSTALL_PREFIX}

Once you are ready to build execute the following commands:

8 Chapter 2. System Requirements

https://github.com/esmf-org/esmf

GCHP, Release 14.3.0

$ source path/to/your/env/file
$ cd $ESMF_DIR
$ make -j &> compile.log

Once compilation completes check the end of compile.log to see if compilation was successful. You may run into
known errors with compiling certain ESMF versions with GNU and Intel compilers. If you run into a problem with
GNU you can try adding this to your environment file, resourcing it, and then rebuilding.

ESMF may not build with GCC without the following work-around
for a type mismatch error (https://trac.macports.org/ticket/60954)
if [["x${ESMF_COMPILER}" == "xgfortran"]]; then

export ESMF_F90COMPILEOPTS="-fallow-argument-mismatch -fallow-invalid-boz"
fi

If you run into a problem with Intel compilers then try the following.

Make sure /usr/bin comes first in the search path, so that the build
will find /usr/bin/gcc compiler, which ESMF uses for preprocessing.
Also unset the ESMF_F90COMPILEOPTS variable, which is only needed for GNU.
if [["x${ESMF_COMPILER}" == "xintel"]]; then

export PATH="/usr/bin:${PATH}"
unset ESMF_F90COMPILEOPTS

fi

Once you have a successful run then install ESMF using this command:

$ make install &> install.log

Check the end of file install.log. A message that installation was complete should be there if ESMF installation
was a success.

If all went well there should now be a folder in the top-level ESMF directory corresponding to what you defined as
environment variable ESMF_INSTALL_PREFIX. Archive your compile and install logs to that directory.

$ mv compile.log $ESMF_INSTALL_PREFIX
$ mv install.log $ESMF_INSTALL_PREFIX

Calling make builds ESMF and calling make install places the build into your install directory. In that folder the build
files are placed within subdirectories such as bin and lib, among others. The install directory is not deleted when you
clean ESMF source code with make distclean in the top-level ESMF directory. Therefore you can clean and rebuild
ESMF with different combinations of libraries and versions in advance of needing them to build and run GCHP. Just
remember to clean the source code and source the environment file you intend to use prior to creating a new build.
Make sure you specify a different ${ESMF_INSTALL_PREFIX} for each unique build so as not to overwrite others.

Below is a complete summary of build steps, including cleanup at the end and moving logs files and your environment
file to the install directory for archiving. This is a complete list of command line steps assuming you have a functional
environment file with correct install path and have checked out the version of ESMF you wish to build.

$ cd $ESMF_DIR
$ make distclean
$ source path/to/env/file/with/unique/ESMF_INSTALL_PREFIX
$ make &> compile.log
$ install $> install.log
$ mv compile.log $ESMF_INSTALL_PREFIX

(continues on next page)

2.1. Software Requirements 9

GCHP, Release 14.3.0

(continued from previous page)

$ mv install.log $ESMF_INSTALL_PREFIX
$ cp /path/to/your/env/file $ESMF_INSTALL_PREFIX

2.2 Hardware Requirements

High-end HPC infrastructure is not required to use GCHP effectively. Gigabit Ethernet and two nodes is enough for
returns on performance compared to GEOS-Chem Classic.

2.2.1 Bare Minimum Requirements

• 6 cores

• 32 GB of memory

• 100 GB of storage for input and output data

Running GCHP on one node with as few as six cores is possible but we recommend this only for testing short low
resolution runs such as running GCHP for the first time and for debugging. These bare minimum requirements are
sufficient for running GCHP at C24. Please note that we recommend running at C90 or greater for scientific applications.

2.2.2 Recommended Minimum Requirements

• 2 nodes, preferably 24 cores per node

• Gigabit Ethernet (GbE) interconnect or better

• 100+ GB memory per node

• 1 TB of storage, depending on your input and output needs

These recommended minimums are adequate to effectively use GCHP in scientific applications. These runs should be
at grid resolutions at or above C90.

2.2.3 Big Compute Recommendations

• 5–50 nodes, or more if running at C720 (12 km grid)

• >24 cores per node (the more the better), preferably Intel Xeon

• High throughput and low-latency interconnect, preferably InfiniBand if using 500 cores

• 1 TB of storage, depending on your input and output needs

These requirements can be met by using a high-performance-computing cluster or a cloud-HPC service like AWS.

10 Chapter 2. System Requirements

GCHP, Release 14.3.0

2.2.4 General Hardware and Software Recommendations

• Hyper-threading may improve simulation throughput, particularly at low core counts

• MPI processes should be bound sequentially across cores and nodes. For example, a simulation using two nodes
with 24 processes per node should bind ranks 0-23 on the first node and ranks 24-47 on the second node. This
should be the default, but it’s worth checking if your performance is lower than expected. With OpenMPI the
--report-bindings argument will show you how processes are ranked and binded.

• If using IntelMPI include the following your environment setup to avoid a run-time error:

export I_MPI_ADJUST_GATHERV=3
export I_MPI_ADJUST_ALLREDUCE=12

• If using OpenMPI and a large number of cores (>1000) we recommend enabling the MAPL o-server func-
tionality for writing restart files, thereby speeding up the model. This is set automatically when executing
setCommonRunSettings.sh if using over 1000 cores. You can also toggle whether to use it manually in that
file.

2.2. Hardware Requirements 11

GCHP, Release 14.3.0

12 Chapter 2. System Requirements

CHAPTER

THREE

KEY REFERENCES

• GEOS-Chem was first described in [Bey et al., 2001].

• HEMCO is described in [Keller et al., 2014] and [Lin et al., 2021].

• Columnar operators are described in [Long et al., 2015].

• GEOS-Chem High Performance (GCHP) is described in [Eastham et al., 2018].

• GCHP execution on the cloud and MPI considerations are described in [Zhuang et al., 2020].

• Grid-stretching is described in [Bindle et al., 2021].

• Major GCHP developments in v13 are described in [Martin et al., 2022].

References

13

GCHP, Release 14.3.0

14 Chapter 3. Key References

CHAPTER

FOUR

DOWNLOAD THE MODEL

The GCHP source code is hosted at https://github.com/geoschem/GCHP. Clone the repository:

gcuser:~$ git clone --recurse-submodules https://github.com/geoschem/GCHP.git GCHP

The GCHP repository has submodules (other repositories that are nested inside the GCHP repository) that aren’t au-
tomatically retrieved when you do git clone. The --recurse-submodules option tells Git to finish retrieving the
source code for each submodule. It will also initialize and update each submodule’s source code to the proper place in
its version history.

By default, the source code will be on the main branch which is always the last official release of GCHP. Checking out
the official release is recommended because it is a scientifically-validated version of the code and is easily citable. You
can find the list of past and present GCHP releases here.

Tip: To use an older GCHP version (e.g. 14.0.0), follow these additional steps:

gcuser:~/GCHP$ git checkout tags/14.0.0 # Points HEAD to the tag "14.0.0
→˓"
gcuser:~/GCHP$ git branch version_14.0.0 # Creates a new branch at tag
→˓"14.0.0"
gcuser:~/GCHP$ git checkout version_14.0.0 # Checks out the version_14.0.0␣
→˓branch
gcuser:~/GCHP$ git submodule update --init --recursive # Reverts submodules to the "14.
→˓0.0" tag

You can do this for any tag in the version history. For a list of all tags, type:

gcuser:~/GCHP$ git tag

If you have any unsaved changes, make sure you commit those to a branch prior to updating versions.

Before continuing, it is worth checking that the source code was retrieved correctly. Run git status to check that
there are no differences:

gcuser:~/GCHP$ git status
HEAD detached at 14.0.0
nothing to commit, working tree clean
gcuser:~/GCHP$

The output of git status should confirm your GCHP version and that there are no modifications (nothing to commit,
and a clean working tree). It also says that you are are in detached HEAD state, meaning you are not in a GCHP git

15

https://github.com/geoschem/GCHP
https://github.com/geoschem/GCHP/releases

GCHP, Release 14.3.0

software branch. This is true for all submodules in the model as well. If you wish to use version control to track your
changes you must checkout a new branch to work on in the directory you will be developing.

Note: Compiling GCHP and creating a run directory are independent steps, and their order doesn’t matter. A small
exception is the RUNDIR build option, which controls the behaviour of make install which copies the GCHP exe-
cutable to the run directory; however, this setting can be reconfigured at any time (e.g., after compiling and creating a
run directory).

Here in the User Guide we describe compiling GCHP before we describe creating a run directory. This is so that
conceptually the instructions have a linear flow. The Quickstart Guide, on the other hand, shows how to make a run
directory prior to compiling.

Note: Another resource for GCHP build instructions is our YouTube tutorial.

16 Chapter 4. Download the model

https://www.youtube.com/watch?v=G_DMCv-mJ2k

CHAPTER

FIVE

COMPILE

There are three steps to building GCHP. The first is configuring your build, which is done with cmake; the second step
is compiling, which is done with make. The third step is install, which is also done with make.

In the first step (build configuration), cmake finds GCHP’s software dependencies on your system, and you can set
build options like enabling/disabling components (such as RRTMG), setting paths to run directories, picking between
debug or speed-optimizing compiler flags, etc. The second step (running make) compiles GCHP according your build
configuration. The third step copies GCHP executable to an appropriate location, such as one or more run directories
if you specify them.

Important: These instructions assume you have loaded a computing environment that satisfies GCHP’s software
requirements You can find instructions for building GCHP’s dependencies yourself in the Spack instructions.

5.1 Create a build directory

A build directory is the working directory for a “build”. Conceptually, a “build” is a case/instance of you compiling
GCHP. A build directory stores configuration files and intermediate files related to the build. These files and generated
and used by CMake, Make, and compilers. You can think a build directory like the blueprints for a construction project.

Create a new directory and initialize it as a build directory by running CMake. When you initialize a build directory,
the path to the source code is a required argument:

gcuser:~$ cd ~/Code.GCHP
gcuser:~/Code.GCHP$ mkdir build # create a new directory
gcuser:~/Code.GCHP$ cd build
gcuser:~/Code.GCHP/build$ cmake ~/Code.GCHP # initialize the current dir as a build dir
-- The Fortran compiler identification is GNU 9.2.1
-- The CXX compiler identification is GNU 9.2.1
-- The C compiler identification is GNU 9.2.1
-- Check for working Fortran compiler: /usr/bin/f95
-- Check for working Fortran compiler: /usr/bin/f95 -- works
...
-- Configuring done
-- Generating done
-- Build files have been written to: /src/build
gcuser:~/Code.GCHP/build$

If your cmake output is similar to the snippet above, and it says configuring & generating done, then your configuration
was successful and you can move on to compiling or modifying build settings. If you got an error, don’t worry, that

17

../supplement/spack.html

GCHP, Release 14.3.0

just means the automatic configuration failed. To fix the error you might need to tweak settings with more cmake
commands, or you might need to modify your environment and run cmake again to retry the automatic configuration.

If you want to restart configuring your build from scratch, delete your build directory. Note that the name and location
of your build directory doesn’t matter, but a good name is build/, and a good place for it is the top-level of your source
code.

5.1.1 Resolving initialization errors

If your last step was successful, skip this section.

Even if you got a cmake error, your build directory was initialized. This means from now on, you can check if the
configuration is fixed by running

gcuser:~/Code.GCHP/build$ cmake . # "." because the cwd is the build dir

To resolve your errors, you might need to modify your environment (e.g., load different software modules), or give
CMake a hint about where some software is installed. Once you identify the problem and make the appropriate update,
run cmake . to see if the error is fixed.

To start troubleshooting, read the cmake output in full. It is human-readable, and includes important information about
how the build was set up on your system, and specifically what error is preventing a successful configuration (e.g., a
dependency that wasn’t found, or a compiler that is broken). To begin troubleshooting you should check that:

• check that the compilers are what you expect (e.g., GNU 9.2, Intel 19.1, etc.)

• check that dependencies like MPI, HDF5, NetCDF, and ESMF were found

• check for obvious errors/incompatibilities in the paths to “Found” dependencies

Note: F2PY and ImageMagick are not required. You can safely ignore warnings about them not being found.

Most errors are caused by one or more of the following issues:

• The wrong compilers were chosen. Fix this by explicitly setting the compilers.

• The compiler’s version is too old. Fix this by using newer compilers.

• A software dependency is missing. Fix this by loading the appropriate software. Some hints:

– If HDF5 is missing, does h5cc -show or h5pcc -show work?

– If NetCDF is missing, do nc-config --all and nf-config --all work?

– If MPI is missing, does mpiexec --help work?

• A software dependency is loaded but it wasn’t found automatically. Fix this by pointing CMake to the missing
software/files with cmake . -DCMAKE_PREFIX_PATH=/path/to/missing/files.

– If ESMF is missing, point CMake to your ESMF install with -DCMAKE_PREFIX_PATH

• Software modules that are not compatible. Fix this by loading compatible modules/dependencies/compilers.
Some hints:

– This often shows as an error message saying a compiler is “broken” or “doesn’t work”

– E.g. incompatibility #1: you’re using GNU compilers but HDF5 is built for Intel compilers

– E.g. incompatibility #2: ESMF was compiled for a different compiler, MPI, or HDF5

18 Chapter 5. Compile

GCHP, Release 14.3.0

If you are stumped, don’t hesitate to open an issue on GitHub. Your system administrators might also be able to help.
Be sure to include CMakeCache.txt from your build directory, as it contains useful information for troubleshooting.

Note: If you get a CMake error saying “Could not find XXXX” (where XXXX is a dependency like ESMF, NetCDF,
HDF5, etc.), the problem is that CMake can’t automatically find where that library is installed. You can add custom
paths to CMake’s default search list by setting the CMAKE_PREFIX_PATH variable.

For example, if you got an error saying “Could not find ESMF”, and ESMF is installed to /software/ESMF, you would
do

gcuser:~/Code.GCHP/build$ cmake . -DCMAKE_PREFIX_PATH=/software/ESMF
...
-- Found ESMF: /software/ESMF/include (found version "8.1.0")
...
-- Configuring done
-- Generating done
-- Build files have been written to: /src/build
gcuser:~/Code.GCHP/build$

See the next section for details on setting variables like CMAKE_PREFIX_PATH.

Note: You can explicitly specify compilers by setting the CC, CXX, and FC environment variables. If the auto-selected
compilers are the wrong ones, create a brand new build directory, and set these variables before you initialize it. E.g.:

gcuser:~/Code.GCHP/build$ cd ..
gcuser:~/Code.GCHP$ rm -rf build # build dir initialized with wrong compilers
gcuser:~/Code.GCHP$ mkdir build # make a new build directory
gcuser:~/Code.GCHP$ cd build
gcuser:~/Code.GCHP/build$ export CC=icc # select "icc" as C compiler
gcuser:~/Code.GCHP/build$ export CXX=icpc # select "icpc" as C++ compiler
gcuser:~/Code.GCHP/build$ export FC=icc # select "ifort" as Fortran compiler
gcuser:~/Code.GCHP/build$ cmake ~/Code.GCHP # initialize new build dir
-- The Fortran compiler identification is Intel 19.1.0.20191121
-- The CXX compiler identification is Intel 19.1.0.20191121
-- The C compiler identification is Intel 19.1.0.20191121
...

5.2 Configure your build

Build settings are controlled by cmake commands like:

$ cmake . -D<NAME>="<VALUE>"

where <NAME> is the name of the setting, and <VALUE> is the value you are assigning it. These settings are persistent
and saved in your build directory. You can set multiple variables in the same command, and you can run cmake as
many times as needed to configure your desired settings.

Note: The . argument is important. It is the path to your build directory which is . here.

5.2. Configure your build 19

GCHP, Release 14.3.0

No build settings are required. You can find the complete list of GCHP’s build settings here. The most common setting
is RUNDIR, which lets you specify one or more run directories to install GCHP to. Here, “install” refers to copying the
compiled executable, and some supplemental files with build settings, to your run directory/directories.

Note: You can update build settings after you compile GCHP. Simply rerun make and (optionally) make install,
and the build system will automatically figure out what needs to be recompiled.

Since there are no required build settings, so here, we will stick with the default settings.

You should notice that when you run cmake it ends with:

...
-- Configuring done
-- Generating done
-- Build files have been written to: /src/build

This tells you that the configuration was successful, and that you are ready to compile.

5.3 Compile GCHP

You compile GCHP with:

gcuser:~/Code.GCHP/build$ make -j # -j enables compiling in parallel

Note: You can add VERBOSE=1 to see all the compiler commands.

Note: If you run out of memory while compiling, restrict the number of processes that can run concurrently (e.g., use
-j20 to restrict to 20 processes)

Compiling GCHP creates ./bin/gchp (the GCHP executable). You can copy this executable to your run directory
manually, or if you set the RUNDIR build option, you can do

gcuser:~/Code.GCHP/build$ make install # Requires that RUNDIR build option is set

to copy the executable (and supplemental files) to your run directories.

Now you have compiled GCHP! You can move on to creating a run directory!

20 Chapter 5. Compile

GCHP, Release 14.3.0

5.4 Recompiling

You need to recompile GCHP if you update a build setting or modify the source code. With CMake, you do not need
to clean before recompiling. The build system automatically figures out which files need to be recompiled (it’s usually
a small subset). This is known as incremental compiling.

To recompile GCHP, simply do

gcuser:~/Code.GCHP/build$ make -j # -j enables compiling in parallel

and then optionally, make install.

Note: GNU compilers recompile GCHP faster than Intel compilers. This is because of how gfortran formats Fortran
modules files (*.mod files). Therefore, if you want to be able to recompile quickly, consider using GNU compilers.

5.5 GCHP build options

These are persistent build setting that are set with cmake commands like

$ cmake . -D<NAME>="<VALUE>"

where <NAME> is the name of the build setting, and <VALUE> is the value you are assigning it. Below is the list of build
settings for GCHP.

RUNDIR
Paths to run directories where make install installs GCHP. Multiple run directories can be specified by a
semicolon separated list. A warning is issues if one of these directories does not look like a run directory.

These paths can be relative paths or absolute paths. Relative paths are interpreted as relative to your build
directory.

CMAKE_BUILD_TYPE
The build type. Valid values are Release, Debug, and RelWithDebInfo. Set this to Debug if you want to build
in debug mode.

CMAKE_PREFIX_PATH
Extra directories that CMake will search when it’s looking for dependencies. Directories in
CMAKE_PREFIX_PATH have the highest precedence when CMake is searching for dependencies. Multiple
directories can be specified with a semicolon-separated list.

GEOSChem_Fortran_FLAGS_<COMPILER_ID>
Compiler options for GEOS-Chem for all build types. Valid values for <COMPILER_ID> are GNU and Intel.

GEOSChem_Fortran_FLAGS_<BUILD_TYPE>_<COMPILER_ID>
Additional compiler options for GEOS-Chem for build type <BUILD_TYPE>.

HEMCO_Fortran_FLAGS_<COMPILER_ID>
Same as GEOSChem_Fortran_FLAGS_<COMPILER_ID>, but for HEMCO.

HEMCO_Fortran_FLAGS_<BUILD_TYPE>_<COMPILER_ID>
Same as GEOSChem_Fortran_FLAGS_<BUILD_TYPE>_<COMPILER_ID>, but for HEMCO.

RRTMG
Switch to enable the RRTMG component. Set value to y to turn on.

5.4. Recompiling 21

GCHP, Release 14.3.0

FASTJX
Switch to enable the legacy FAST-JX v7.0 photolysis mechanism. Set value y to turn on FAST-JX and turn off
Cloud-J.

OMP
Switch to enable/disable OpenMP multithreading. As is standard in CMake (see if documentation) valid values
are ON, YES, Y, TRUE, or 1 (case-insensitive) and valid false values are their opposites.

INSTALLCOPY
Similar to RUNDIR, except the directories do not need to be run directories.

22 Chapter 5. Compile

https://cmake.org/cmake/help/latest/command/if.html

CHAPTER

SIX

CREATE A RUN DIRECTORY

Run directories are created with the createRunDir.sh script in the run/ subdirectory of the source code. Run
directories are version-specific, so you need to create new run directories for every GEOS-Chem version. The gist
of creating a run directory is simple: navigate to the run/ subdirectory, run ./createRunDir.sh, and answer the
prompts:

gcuser:~$ cd GCHP/run
gcuser:~/GCHP/run$./createRunDir.sh
... <answer the prompts> ...

Important: Use absolute paths when responding to prompts.

If you are unsure what a prompt is asking, see their explanations below, or ask a question on GitHub. After following
all prompts a run directory should be created for you with a confirmation message, and, you can move on to the next
section.

6.1 Explanations of Prompts

Below are detailed explanations of the prompts in ./createRunDir.sh.

6.1.1 Enter ExtData path

The first time you create a GCHP run directory on your system you will be prompted to register as a GEOS-Chem user.
Please provide this information so that we can track GEOS-Chem user groups around the world and get to know what
GEOS-Chem is used for.

Following registration you will be prompted for a path to GEOS-Chem shared data directories. The path should include
the name of your ExtData/ directory and should not contain symbolic links. The path you enter will be stored in file
.geoschem/config in your home directory as environment variable GC_DATA_ROOT. If that file does not already exist
it will be created for you. When creating additional run directories you will only be prompted again if the file is missing
or if the path within it is not valid.

Enter path for ExtData:

23

GCHP, Release 14.3.0

6.1.2 Choose a simulation type

Enter the integer number that is next to the simulation type you want to use.

Choose simulation type:

1. Full chemistry
2. TransportTracers
3. CO2 w/ CMS-Flux emissions
4. Tagged O3
5. Carbon

>>>

If creating a full chemistry run directory you will be given additional options. Enter the integer number that is next to
the simulation option you want to run.

Choose additional simulation option:

1. Standard
2. Benchmark
3. Complex SOA
4. Marine POA
5. Acid uptake on dust
6. TOMAS
7. APM
8. RRTMG

>>>

6.1.3 Choose meteorology source

Enter the integer number that is next to the input meteorology source you would like to use. The primary difference
between GEOS-FP and GEOS-FP native data is that the GEOS-FP native data includes the option to use C720 mass
fluxes or derived winds.

Choose meteorology source:

1. MERRA2 (Recommended)
2. GEOS-FP
3. GEOS-FP native data

>>>

24 Chapter 6. Create a Run Directory

GCHP, Release 14.3.0

6.1.4 Enter run directory path

Enter the target path where the run directory will be stored. You will be prompted to enter a new path if the one you
enter does not exist.

Enter path where the run directory will be created:

>>>

6.1.5 Enter run directory name

Enter the run directory name, or accept the default. You will be prompted for a new name if a run directory of the same
name already exists at the target path.

Enter run directory name, or press return to use default:

NOTE: This will be a subfolder of the path you entered above.

>>>

6.1.6 Enable version control (optional)

Enter whether you would like your run directory tracked with git version control. With version control you can keep
track of exactly what you changed relative to the original settings. This is useful for trouble-shooting as well as tracking
run directory feature changes you wish to migrate back to the standard model.

Do you want to track run directory changes with git? (y/n)

6.1. Explanations of Prompts 25

GCHP, Release 14.3.0

26 Chapter 6. Create a Run Directory

CHAPTER

SEVEN

DOWNLOAD INPUT DATA

Input data for GEOS-Chem is available at http://geoschemdata.wustl.edu/ExtData/.

The bashdatacatalog is the recommended for downloading and managing your GEOS-Chem input data. Refer to the
bashdatacatalog’s Instructions for GEOS-Chem Users. Below is a brief summary of using the bashdatacatalog for
aquiring GCHP input data.

7.1 Install the bashdatacatalog

Install the bashdatacatalog with the following command. Follow the prompts and restart your console.

gcuser:~$ bash <(curl -s https://raw.githubusercontent.com/LiamBindle/bashdatacatalog/
→˓main/install.sh)

Note: You can rerun this command to upgrade to the latest version.

7.2 Download Data Catalogs

Catalog files can be downloaded from http://geoschemdata.wustl.edu/ExtData/DataCatalogs/.

The catalog files define the input data collections that GEOS-Chem needs. There are four catalogs files:

• MeteorologicalInputs.csv – Meteorological input data collections

• ChemistryInputs.csv – Chemistry input data collections

• EmissionsInputs.csv – Emissions input data collections

• InitialConditions.csv – Initial conditions input data collections (restart files)

The latter 3 are version specific, so you need to download the catalogs for the version you intend to use (you can have
catalogs for multiple versions at the same time).

Create a directory to house your catalog files in the top-level of your GEOS-Chem input data directory (commonly
known as “ExtData”). You should create subdirectories for version-specific catalog files.

gcuser:~$ cd /ExtData # navigate to GEOS-Chem data
gcuser:/ExtData$ mkdir InputDataCatalogs # new directory for catalog files
gcuser:/ExtData$ mkdir InputDataCatalogs/13.3 # " for 13.3-specific catalogs (example)

Next, download the catalog for the appropriate version:

27

http://geoschemdata.wustl.edu/ExtData/
https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
http://geoschemdata.wustl.edu/ExtData/DataCatalogs/

GCHP, Release 14.3.0

gcuser:/ExtData$ cd InputDataCatalogs
gcuser:/ExtData/InputDataCatalogs$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/MeteorologicalInputs.csv
gcuser:/ExtData/InputDataCatalogs$ cd 13.3
gcuser:/ExtData/InputDataCatalogs/13.3$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/13.3/ChemistryInputs.csv
gcuser:/ExtData/InputDataCatalogs/13.3$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/13.3/EmissionsInputs.csv
gcuser:/ExtData/InputDataCatalogs/13.3$ wget http://geoschemdata.wustl.edu/ExtData/
→˓DataCatalogs/13.3/InitialConditions.csv

7.3 Fetching Metadata and Downloading Input Data

Important: You should always run bashdatacatalog commands from the top-level of your GEOS-Chem data directory
(the directory with HEMCO/, CHEM_INPUTS/, etc.).

Before you can run bashdatacatalog-list commands, you need to fetch the metadata of each collection. This is
done with the command bashdatacatalog-fetch whose arguments are catalog files:

gcuser:~$ cd /ExtData # IMPORTANT: navigate to top-level of GEOS-Chem input data
gcuser:/ExtData$ bashdatacatalog-fetch InputDataCatalogs/*.csv InputDataCatalogs/**/*.csv

Fetching downloads the latest metadata for every active collection in your catalogs. You should run
bashdatacatalog-fetch whenever you add or modify a catalog, as well as periodically so you get updates to your
collections (e.g., new meteorological data that is processed and added to the meteorological collections).

Now that you have fetched, you can run bashdatacatalog-list commands. You can tailor this command the gen-
erate various types of file lists using its command-line arguments. See bashdatacatalog-list -h for details. A
common use case is generating a list of required input files that missing in your local file system.

gcuser:/ExtData$ bashdatacatalog-list -am -r 2018-06-30,2018-08-01 InputDataCatalogs/*.
→˓csv InputDataCatalogs/**/*.csv

Here, -a means “all” files (temporal files and static files), -m means “missing” (list files that are absent locally), -r
START,END is the date-range of your simulation (you should add an extra day before/after your simulation), and the
remaining arguments are the paths to your catalog files.

The command can be easily modified so that it generates a list of missing files that is compatible with xargs curl to
download all the files you are missing:

gcuser:/ExtData$ bashdatacatalog-list -am -r 2018-06-30,2018-08-01 -f xargs-curl␣
→˓InputDataCatalogs/*.csv InputDataCatalogs/**/*.csv | xargs curl

Here, -f xargs-curl means the output file list should be formatted for piping into xargs curl.

28 Chapter 7. Download Input Data

GCHP, Release 14.3.0

7.4 See Also

• bashdatacatalog - Instructions for GEOS-Chem Users

• bashdatacatalog - List of useful commands

• GEOS-Chem Input Data Catalogs

7.4. See Also 29

https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/LiamBindle/bashdatacatalog/wiki/3.-Useful-Commands
http://geoschemdata.wustl.edu/ExtData/DataCatalogs/

GCHP, Release 14.3.0

30 Chapter 7. Download Input Data

CHAPTER

EIGHT

RUN THE MODEL

Note: Another useful resource for instructions on running GCHP is our YouTube tutorial.

This page presents the basic information needed to run GCHP as well as how to verify a successful run and reuse a run
directory. A pre-run checklist is included here for easy reference. Please read the rest of this page to understand these
steps.

8.1 Pre-run checklist

Prior to running GCHP, always run through the following checklist to ensure everything is set up properly.

1. Start date is set in cap_restart

2. Executable gchp is present.

3. All symbolic links are valid (no broken links)

4. Settings are correct in setCommonRunSettings.sh

5. setRestartLink.sh runs without error (ensures restart file is available)

6. If running via a job scheduler, totals cores are the same in setCommonRunSettings.sh and the run script

7. If running interactively, you have available locally the total cores in setCommonRunSettings.sh

8.2 How to run GCHP

You can run GCHP locally from within your run directory (“interactively”) or by submitting your run to a job scheduler
if one is available. Either way, it is useful to put run commands into a reusable script we call the run script. Executing
the script will either run GCHP or submit a job that will run GCHP.

There is a symbolic link in the GCHP run directory called runScriptSamples that points to a directory in the source
code containing example run scripts. Each file includes extra commands that make the run process easier and less
prone to user error. These commands include:

1. Define a GCHP log file that includes start date configured in cap_restart in its name

2. Source environment file symbolic link gchp.env

3. Source config file setCommonRunSettings.sh to update commonly changed run settings

4. Set restart file symbolic link gchp_restart.nc4 to target file in Restarts subdirectory for configured start
date and grid resolution

31

https://www.youtube.com/watch?v=K6frcfCjpds

GCHP, Release 14.3.0

5. Check that cap_restart now contains end date of your run

6. Move the output restart file to the Restarts subdirectory

7. Rename the output restart file to include run start date and grid resolution (format GEOSChem.Restarts.
YYYYMMDD_HHmmz.cN.nc4)

8.2.1 Run interactively

Copy or adapt example run script gchp.local.run to run GCHP locally on your machine. Before running, make sure
the total number of cores configured in setCommonRunSettings.sh is available locally. It must be at least 6.

To run, type the following at the command prompt:

$./gchp.local.run

Standard output will be displayed on your screen in addition to being sent to a log file with filename format gchp.
YYYYMMDD_HHmmSSz.log. The HEMCO log output is also included in this file.

8.2.2 Run as batch job

Batch job run scripts will vary based on what job scheduler you have available. We offer a template batch job run script
in the runScriptSamples subdirectory called gchp.batch_job.sh. This file contains examples for 3 types of job
scheduler: SLURM, LSF, and PBS. You may copy and adapt this file for your system and preferences as needed.

At the top of all batch job scripts are configurable run settings. Most critically are requested # cores, # nodes, time,
and memory. Figuring out the optimal values for your run can take some trial and error. See hardware requirements
for guidance on what to choose. The more cores you request the faster GCHP will run given the same grid resolution.
Configurable job scheduler settings and acceptable formats are often accessible from the command line. For example,
type man sbatch to scroll through configurable options for SLURM, including various ways of specifying number of
cores, time and memory requested.

To submit a batch job using a run script called gchp.run and the SLURM job scheduler:

$ sbatch gchp.run

To submit using Grid Engine instead of SLURM:

$ qsub gchp.run

If your computational cluster uses a different job scheduler, check with your IT staff or search the internet for how to
configure and submit batch jobs on your system.

8.3 Verify a successful run

Standard output and standard error will be sent to a file specific to your scheduler, e.g. slurm-jobid.out, unless
you configured your run script to send it to a different log file. Variable log is defined in the template run script as
gchp.YYYYMMDD_HHmmSSz.log if you wish to use it. The date string in the log filename is the start date of your
simulation as configured in cap_restart. This log is automatically used if you execute the interactive run script
example gchp.local.run.

There are several ways to verify that your run was successful. Here are just a few:

1. The GCHP log file shows every timestep (search for AGCM Date) and ends with timing information.

32 Chapter 8. Run the model

GCHP, Release 14.3.0

2. NetCDF files are present in the OutputDir/ subdirectory.

3. There is a restart file corresponding to your end date in the Restarts subdirectory.

4. The start date in cap_restart has been updated to your run end date.

5. The job scheduler log does not contain any error messages.

6. Output file allPEs.log does not contain any error messages.

If it looks like something went wrong, scan through the log files to determine where there may have been an error. Here
are a few debugging tips:

• Review all of your configuration files to ensure you have proper setup, especially setCommonRunSettings.sh.

• “MAPL_Cap” or “CAP” errors in the run log typically indicate an error with your start time and/or duration.
Check cap_restart and setCommonRunSettings.sh.

• “MAPL_ExtData” or “ExtData” errors in the run log indicate an error with your input files. Check
HEMCO_Config.rc and ExtData.rc.

• “MAPL_HistoryGridComp” or “History” errors in the run log are related to your configured diagnostics. Check
HISTORY.rc.

• Change the warnings and verbose options in HEMCO_Config.rc to 3 and rerun

• Change the root_level settings for CAP.ExtData in logging.yml to DEBUG and rerun

• Recompile the model with cmake option -DCMAKE_BUILD_TYPE=Debug and rerun.

If you cannot figure out where the problem is then please create a GCHP GitHub issue.

8.4 Reuse a run directory

8.4.1 Archive run output

Reusing a GCHP run directory comes with the perils of losing your old work. To mitigate this issue there is utility
shell script archiveRun.sh. This script archives data output and configuration files to a subdirectory that will not be
deleted if you clean your run directory.

Archiving runs is useful for other reasons as well, including:

• Save all settings and logs for later reference after a run crashes

• Generate data from the same executable using different run-time settings for comparison, e.g. c48 versus c180

• Run short runs to compare for debugging

To archive a run, pass the archive script a descriptive subdirectory name where data will be archived. For example:

$./archiveRun.sh 1mo_c24_24hrdiag

Which files are copied and to where will be displayed on the screen. Diagnostic files in the OutputDir/ directory
will be moved rather than copied so as not to duplicate large files. Restart files will not be archived. If you would like
include restart files in the archive you must manually copy or move them.

8.4. Reuse a run directory 33

GCHP, Release 14.3.0

8.4.2 Clean a run directory

It is good practice to clean your run directory prior to your next run if starting on the same date. This avoids confusion
about what output was generated when and with what settings. To make run directory cleaning simple we provide
utility shell script cleanRunDir.sh. To clean the run directory simply execute this script.

$./cleanRunDir.sh

All GCHP output diagnostic files and logs, including NetCDF files in OutputDir/, will be deleted. Restart files in the
Restarts subdirectory will not be deleted.

34 Chapter 8. Run the model

CHAPTER

NINE

CONFIGURATION FILES

All GCHP run directories have default simulation-specific run-time settings that are set in the configuration files. This
section gives an high-level overview of all run directory configuration files used at run-time in GCHP, followed by links
to detailed descriptions if you wish to learn more.

Note: The many configuration files in GCHP can be overwhelming. However, you should be able to accomplish most
if not all of what you wish to configure from one place in setCommonRunSettings.sh. That file is a bash script used
to configure settings in other files from one place.

9.1 High-level summary

This high-level summary of GCHP configuration files gives a short description of each file.

setCommonRunSettings.sh
This file is a bash script that includes commonly changed run settings. It makes it easier to manage configuring
GCHP since settings can be changed from one file rather than across multiple configuration files. When this file
is executed it updates settings in other configuration files, overwriting what is there. Please get very familiar with
the options in setCommonRunSettings.sh and be conscientious about not updating the same setting elsewhere.

GCHP.rc
Controls high-level aspects of the simulation, including grid type and resolution, core distribution, stretched-grid
parameters, timesteps, and restart filename.

CAP.rc
Controls parameters used by the highest level gridded component (CAP). This includes simulation run time
information, name of the Root gridded component (GCHP), config filenames for Root and History, and toggles
for certain MAPL logging utilities (timers, memory, and import/export name printing).

ExtData.rc
Config file for the MAPL ExtData component. Specifies input variable information, including name, regridding
method, read frequency, offset, scaling, and file path. All GCHP imports must be specified in this file. Toggles
at the top of the file enable MAPL ExtData debug prints and using most recent year if current year of data is
unavailable. Default values may be used by specifying file path /dev/null.

geoschem_config.yml
Primary config file for GEOS-Chem. Same file format as in GEOS-Chem Classic but containing only options
relevant to GCHP.

HEMCO_Config.rc
Contains emissions information used by HEMCO. Same function as in GEOS-Chem Classic except only

35

GCHP, Release 14.3.0

HEMCO name, species, scale IDs, category, and hierarchy are used. Diagnostic frequency, file path, read fre-
quency, and units are ignored, and are instead stored in GCHP config file ExtData.rc. All HEMCO variables
listed in HEMCO_Config.rc for enabled emissions must also have an entry in ExtData.rc.

input.nml
Namelist used in advection for domain stack size and stretched grid parameters.

logging.yml
Config file for the NASA pFlogger package included in GCHP for logging. This package uses a hierarchy of
loggers, such as info, warnings, error, and debug, to extract non-GEOS-Chem information about GCHP runs and
print it to log file allPEs.log.

HISTORY.rc
Config file for the MAPL History component. It configures diagnostic output from GCHP.

HEMCO_Diagn.rc
Contains information mapping HISTORY.rc diagnostic names to HEMCO containers. Same function as in
GEOS-Chem Classic except that not all items in HEMCO_Diagn.rc will be output; only emissions listed in
HISTORY.rc will be included in diagnostics. All GCHP diagnostics listed in HISTORY.rc that start with Emis,
Hco, or Inv must have a corresponding entry in HEMCO_Diagn.rc.

9.2 Additional resources

Detailed information about each file can be found in the below list of links. You can also reach these pages by continuing
with the “next” buttons in this user guide.

9.2.1 setCommonRunSettings.sh

This file is a bash script to specify run-time values for commonly changed settings and update other configuration files
that set them. This is intended as a helper script to make configuring GCHP runs easier. There are four sections of the
file: (1) configuration, (2) error checks, (3) helper functions, and (4) update files.

The configuration section is usually the only part of the file you need to look at. The configuration section itself is
divided into two parts. The first part contains the most frequently changed settings. Categories are:

• Compute resources

• Grid resolution

• Stretched grid

• Simulation duration

• GEOS-Chem components

• Diagnostics

• Mid-run checkpoint files

The second part contains settings that are less frequently changed but that are still convenient to update from one place.
These include:

• Model phase (e.g. adjoint)

• Timesteps

• Online dust mass tuning factor

36 Chapter 9. Configuration files

GCHP, Release 14.3.0

• Domain decomposition

The entire configuration section contains many comments with instructions on how to change the settings and what the
options are. Please see that file for more information.

The error checks section is a holdover from the earlier design of GCHP run directories. This section checks to make sure
your run directory settings make sense and will not cause an early crash due to a simple mistake, such as a core count that
is not divisible by 6. This section will be moving to file checkRunSetting.sh that is in your run directory but that is
currently just a placeholder. Eventually that script will be able to be run separately from setCommonRunSettings.sh
as a quick check prior to doing a run.

The helper functions section contains several functions to simplify updating configuration files based on the settings
you specified in the configurations section earlier in the script. Some of the functions are general, such as printing
a message during file update based on if the script was passed optional argument --verbose. Other functions are
specialized, such as replacing met-field read frequency in ExtData.rc based on the model timestep.

The update files section changes settings in other configuration files based on what you set in the configurables section.
You can browse this section to see exactly what files are changed. You can also view this information by running the
script with the --verbose option.

Using the setCommonRunSettings.sh script is technically optional to run GCHP. However, we highly recommend
using it to avoid mistakes in your run directory setup. Knowing which configuration files need to be changed for which
run-time settings and then changing them all manually is cumbersome and error-prone. We hope that using this file
will make it easier to use GCHP without making mistakes.

9.2.2 GCHP.rc

GCHP.rc is the resource configuration file for the ROOT component within GCHP. The ROOT gridded component
includes three children gridded components, including one each for GEOS-Chem, FV3 advection, and the data utility
environment needed to support them.

NX, NY
Number of grid cells in the two MPI sub-domain dimensions. NX * NY must equal the number of CPUs. NY
must be a multiple of 6.

GCHP.GRID_TYPE
Type of grid GCHP will be run at. Should always be Cubed-Sphere.

GCHP.GRIDNAME
Descriptive grid label for the simulation. The default grid name is PE24x144-CF. The grid name includes how
the pole is treated, the face side length, the face side length times six, and whether it is a Cubed Sphere Grid or
Lat/Lon. The name PE24x144-CF indicates polar edge (PE), 24 cells along one face side, 144 for 24*6, and a
cubed-sphere grid (CF). Many options here are defined in MAPL_Generic.

Note: Must be consistent with IM and JM.

GCHP.NF
Number of cubed-sphere faces. This is set to 6.

GCHP.IM_WORLD
Number of grid cells on the side of a single cubed sphere face.

GCHP.IM
Number of grid cells on the side of a single cubed sphere face.

GCHP.JM
Number of grid cells on one side of a cubed sphere face, times 6. This represents a second dimension if all six
faces are stacked in a 2-dimensional array. Must be equal to IM*6.

9.2. Additional resources 37

GCHP, Release 14.3.0

GCHP.LM
Number of vertical grid cells. This must be equal to the vertical resolution of the offline meteorological fields
(72) since MAPL cannot regrid vertically.

GCHP.STRETCH_FACTOR
Ratio of configured global resolution to resolution of targeted high resolution region if using stretched grid.

GCHP.TARGET_LON
Target longitude for high resolution region if using stretched grid.

GCHP.TARGET_LAT
Target latitude for high resolution region if using stretched grid.

IM
Same as GCHP.IM and GCHP.IM_WORLD.

JM
Same as GCHP.JM.

LM
Same as GCHP.LM.

GEOChem_CTM
If set to 1, tells FVdycore that it is operating as a transport model rather than a prognostic model.

AdvCore_Advection
Toggles offline advection. 0 is off, and 1 is on.

DYCORE
Should either be set to OFF (default) or ON. This value does nothing, but MAPL will crash if it is not declared.

HEARTBEAT_DT
The timestep in seconds that the DYCORE Component should be called. This must be a multiple of HEART-
BEAT_DT in CAP.rc.

SOLAR_DT
The timestep in seconds that the SOLAR Component should be called. This must be a multiple of HEART-
BEAT_DT in CAP.rc.

IRRAD_DT
The timestep in seconds that the IRRAD Component should be called. ESMF checks this value during its timestep
check. This must be a multiple of HEARTBEAT_DT in CAP.rc.

RUN_DT
The timestep in seconds that the RUN Component should be called.

GCHPchem_DT
The timestep in seconds that the GCHPchem Component should be called. This must be a multiple of HEART-
BEAT_DT in CAP.rc.

RRTMG_DT
The timestep in seconds that RRTMG should be called. This must be a multiple of HEARTBEAT_DT in CAP.rc.

DYNAMICS_DT
The timestep in seconds that the FV3 advection Component should be called. This must be a multiple of HEART-
BEAT_DT in CAP.rc.

SOLARAvrg, IRRADAvrg
Default is 0.

GCHPchem_REFERENCE_TIME
HHMMSS reference time used for GCHPchem MAPL alarms.

38 Chapter 9. Configuration files

GCHP, Release 14.3.0

PRINTRC
Specifies which resource values to print. Options include 0: non-default values, and 1: all values. Default setting
is 0.

PARALLEL_READFORCING
Enables or disables parallel I/O processes when writing the restart files. Default value is 0 (disabled).

NUM_READERS, NUM_WRITERS
Number of simultaneous readers. Should divide evenly unto NY. Default value is 1.

BKG_FREQUENCY
Active observer when desired. Default value is 0.

RECORD_FREQUENCY
Frequency of periodic restart file write in format HHMMSS.

RECORD_REF_DATE
Reference date(s) used to determine when to write periodic restart files.

RECORD_REF_TIME
Reference time(s) used to determine when to write periodic restart files.

GCHOchem_INTERNAL_RESTART_FILE
The filename of the internal restart file to be written.

GCHPchem_INTERNAL_RESTART_TYPE
The format of the internal restart file. Valid types include pbinary and pnc4. Only use pnc4 with GCHP.

GCHPchem_INTERNAL_CHECKPOINT_FILE
The filename of the internal checkpoint file to be written.

GCHPchem_INTERNAL_CHECKPOINT_TYPE
The format of the internal checkstart file. Valid types include pbinary and pnc4. Only use pnc4 with GCHP.

GCHPchem_INTERNAL_HEADER
Only needed when the file type is set to pbinary. Specifies if a binary file is self-describing.

DYN_INTERNAL_RESTART_FILE
The filename of the DYNAMICS internal restart file to be written. Please note that FV3 is not configured in
GCHP to use an internal state and therefore will not have a restart file.

DYN_INTERNAL_RESTART_TYPE
The format of the DYNAMICS internal restart file. Valid types include pbinary and pnc4. Please note that FV3
is not configured in GCHP to use an internal state and therefore will not have a restart file.

DYN_INTERNAL_CHECKPOINT_FILE
The filename of the DYNAMICS internal checkpoint file to be written. Please note that FV3 is not configured
in GCHP to use an internal state and therefore will not have a restart file.

DYN_INTERNAL_CHECKPOINT_TYPE
The format of the DYNAMICS internal checkpoint file. Valid types include pbinary and pnc4. Please note that
FV3 is not configured in GCHP to use an internal state and therefore will not have a restart file.

DYN_INTERNAL_HEADER
Only needed when the file type is set to pbinary. Specifies if a binary file is self-describing.

RUN_PHASES
GCHP uses only one run phase. The GCHP gridded component for chemistry, however, has the capability of
two. The two-phase feature is used only in GEOS.

HEMCO_CONFIG
Name of the HEMCO configuration file. Default is HEMCO_Config.rc in GCHP.

9.2. Additional resources 39

GCHP, Release 14.3.0

STDOUT_LOGFILE
Log filename template. Default is PET%%%%%.GEOSCHEMchem.log. This file is not actually used for primary
standard output.

STDOUT_LOGLUN
Logical unit number for stdout. Default value is 700.

MEMORY_DEBUG_LEVEL
Toggle for memory debugging. Default is 0 (off).

WRITE_RESTART_BY_OSERVER
Determines whether MAPL restart write should use o-server. This must be set to YES for high core count (>1000)
runs to avoid hanging during file write. It is NO by default.

9.2.3 CAP.rc

CAP.rc is the configuration file for the top-level gridded component called CAP. This gridded component can be
thought of as the primary driver of GCHP. Its config file handles general runtime settings for GCHP including
time parameters, performance profiling routines, and system-wide timestep (hearbeat). Combined with output file
cap_restart, CAP.rc configures the exact dates for the next GCHP run.

ROOT_NAME
Sets the name MAPL uses to initialize the ROOT child gridded component component within CAP. CAP uses
this name in all operations when querying and interacting with ROOT. It is set to GCHP.

ROOT_CF
Resource configuration file for the ROOT component. It is set to GCHP.rc.

HIST_CF
Resource configuration file for the MAPL HISTORY gridded component (another child gridded component of
CAP). It is set to HISTORY.rc.

BEG_DATE
Simulation begin date in format YYYYMMDD hhmmss. This parameter is overrided in the presence of output
file cap_restart containing a different start date.

END_DATE
Simulation end date in format YYYYMMDD hhmmss. If BEG_DATE plus duration (JOB_SGMT) is before
END_DATE then simulation will end at BEG_DATE + JOB_SGMT. If it is after then simulation will end at
END_DATE.

JOB_SGMT
Simulation duration in format YYYYMMDD hhmmss. The duration must be less than or equal to the difference
between start and end date or the model will crash.

HEARTBEAT_DT
The timestep of the ESMF/MAPL internal clock, in seconds. All other timesteps in GCHP must be a multiple of
HEARTBEAT_DT. ESMF queries all components at each heartbeat to determine if computation is needed. The
result is based upon individual component timesteps defined in GCHP.rc.

MAPL_ENABLE_TIMERS
Toggles printed output of runtime MAPL timing profilers. This is set to YES. Timing profiles are output at the
end of every GCHP run.

MAPL_ENABLE_MEMUTILS
Enables runtime output of the programs’ memory usage. This is set to YES.

PRINTSPEC
Allows an abbreviated model run limited to initializat and print of Import and Export state variable names.
Options include:

40 Chapter 9. Configuration files

GCHP, Release 14.3.0

• 0 (default): Off

• 1: Imports and Exports only

• 2: Imports only

• 3: Exports only

USE_SHMEM
This setting is deprecated but still has an entry in the file.

REVERSE_TIME
Enables running time backwards in CAP. Default is 0 (off).

USE_EXTDATA2G
Enables using the next generation of MAPL ExtData (input component) which uses a yaml-format configuration
file. Default is .FALSE. (off).

9.2.4 ExtData.rc

ExtData.rc contains input variable and file read information for GCHP. Explanatory information about the file is
located at the top of the configuration file in all run directories. The file format is the same as that used in the GEOS
model, and GMAO/NASA documentation for it can be found at the ExtData component page on the GEOS-5 wiki.
Note that this file will be retired in GCHP v15.0 when MAPL version 3 is integrated into GCHP. It will be replaced
with a YAML format file with a simplified and easier to understand interface.

The ins and outs of ExtData.rc can be hard to grasp, particular with regards to variable data updating, time interpo-
lation, and file read. Reach out on the GCHP GitHub Issues page if you need help. See also the GCHP ReadTheDocs
page on enabling ExtData prints for debugging. Enabling ExtData debug prints is the best way to determine what
MAPL is doing for file I/O per import.

The following parameter is set at the top of the file:

Ext_AllowExtrap
Logical toggle to use data from nearest year available, including meteorology if files for the simulation year
are not found. This is set to true for GCHP. Note that GEOS-Chem Classic accomplishes the same effect but
with more flexibility in HEMCO_Config.rc, and the entries of HEMCO_Config.rc which do this are ignored in
GCHP.

The rest of the file contains whitespace-delimited lines. Each line describes one data variable imported to the model
from an external file. Columns are as follows in order from left to right:

Name
Name of the field stored in the MAPL Imports container. This is independent of the name of the data field in the
input file. For the case of entries that also appear in HEMCO_Config.rc it is also the name of the HEMCO emis-
sions container (left-most column in that file). For those fields it is used to match scaling and masking information
in HEMCO_Config.rc with file I/O information in ExtData.rc. All file I/O information HEMCO_Config.rc,
including filename, units, dimensions, regridding, and read frequency are ignored by GCHP.

Units
Unit string of the import. This entry is informational only.

Clim
Whether the data is climatology. Enter Y if the data is a 12 month climatology, enter year if the data is daily
climatology (i.e. 2019), D if the file is monthly day-of-week scale factors (7 values for each of 12 months), or N
for all other cases. If you specify monthly climatology then the data must be stored in either 1 or 12 files.

Conservative
Method to regrid the input data to the simulation grid. Enter Y to use mass conserving regridding, F;{VALUE}
for fractional regridding, or N to use non-conervative bilinear regridding.

9.2. Additional resources 41

GCHP, Release 14.3.0

Refresh
Time template for updating data. This tells MAPL when to look for new data values. It stores previous and next
time data in what are called left and right brackets. There are several options for specifying refresh:

• - : Update variable data only once. Use this if the data is constant in time.

• 0 : Update variable data at every timestep using linear interpolation. For example, if the data is hourly then
MAPL will linearly interpolate between the previous and next hour’s data for every timestep.

• 0:003000 (or other HHMMSS specification for hours, minutes, seconds) : Use specified time offset (i.e.
30 minutes in this example) for setting previous and next time, and interpolate every timestep between the
two. This is useful if, for example, you have time-averaged hourly data and you want the previous and next
times to update half-way between the hour. This format is used for meteorology fields that are interpolated
every timestep, specifically temperature and surface pressure.

• F0:003000 (or other HHMMSS specification for hours, minutes, seconds) : Like the previous option except
there is no time interpolation. This format is used for meteorology fields that are not time-interpolated, such
as cloud fraction.

• %y4-%m2-%h2T%h2:%n2:00 (or other combination of time tokens) : Update variable data when time tokens
change. Interpreting this entry gets a little tricky. The data will be updated when the time tokens change,
not the hard-coded times. For example, a template in the form %y4-%m2-%d2T12:00:00 changes at the
start of each day because that is when the evaluation of %y4-%m2-%d2 changes. While the variable will
be updated at the start of a new day (e.g. at time 2019-01-02 00:00:00), the time used for reading and
interpolation is hour 12 of that day. You can similar hard-code year, month, day, or hour if you always want
to use a constant value for that field.

• F%y4-%m2-%h2T%h2:%n2:00 (or other combination of time tokens) : Like the previous option except that
there is no time interpolation.

Offset Factor
Value the data will be shifted by upon read. Use none for no shifting.

Scale Factor
Value the data will be scaled by upon read. This is useful if you want to convert units upon read, such as from
Pa to hPa. Use none for no scaling.

External File Variable
Name of the variable to read in the netCDF data file.

External File Template
Path to the netCDF data file, including time tokens as needed (%y4 for year, %m2 for month, %d2 for day, %h2 for
hour, %n2 for minutes). If there are no time tokens in the template name then ExtData will assume that all the
data is in one file. If you wish to ignore an entry in ExtData.rc (i.e. not read the data at all since you will not
use it) then put /dev/null. This will save processing time.

Reference Time and Period (optional)
Period of data with reference time. This optional entry is useful if you have data frequency that is offset from
midnight. For example, 3-hourly data available for times 1:30, 4:30, 7:30, etc. The reference time could be
specified as 2000-01-01T01:30:00P03:00. The first part (before P) is the reference date (must be on or before
your simulation start), and the second part (after P) is the period of data availability (in this case 3 hours). This
can be used in combination with the file template containing hours and minutes. It tells MAPL to only read
the file at times that are regular 3 hr intervals from the reference date and time. Not including this would cause
MAPL to read the file every minute if the file template contains the n2 time token.

42 Chapter 9. Configuration files

GCHP, Release 14.3.0

9.2.5 geoschem_config.yml

Information about the geoschem_config.yml file is the same as for GEOS-Chem Classic with a few exceptions. See
the GEOS-Chem ReadTheDocs configuration files section for an overview of the file.

The geoschem_config.yml file used in GCHP is different in the following ways:

• Start/End datetimes are ignored. Set this information in CAP.rc instead.

• Root data directory is ignored. All data paths are specified in ExtData.rc instead with the exception of the
FAST-JX data directory which is still listed (and used) in geoschem_config.yml.

• Met field is ignored. Met field source is described in file paths in ExtData.rc.

• GC classic timers setting is ineffectual. GEOS-Chem Classic timers code is not compiled when building GCHP.

Other parts of the GEOS-Chem Classic geoschem_config.yml file that are not relevant to GCHP are simply not
included in the file that is copied to the GCHP run directory.

9.2.6 HEMCO_Config.rc

Like geoschem_config.yml, information about the HEMCO_Config.rc file is the same as for GEOS-Chem Classic
with a few exceptions. Refer to the HEMCO documentation for an overview of the file.

Some content of the HEMCO_Config.rc file is ignored by GCHP. This is because MAPL ExtData handles file input
rather than HEMCO in GCHP.

Items at the top of the file that are ignored include:

• ROOT data directory path

• METDIR path

• DiagnPrefix

• DiagnFreq

• Wildcard

In the BASE EMISSIONS section and beyond, columns that are ignored include:

• sourceFile

• sourceVar

• sourceTime

• C/R/E

• SrcDim

• SrcUnit

All of the above information is specified in file ExtData.rc instead with the exception of diagnostic prefix and fre-
quency. Diagnostic filename and frequency information is specified in HISTORY.rc.

9.2. Additional resources 43

GCHP, Release 14.3.0

9.2.7 input.nml

input.nml controls specific aspects of the FV3 dynamical core used for advection. Entries in input.nml are described
below.

&fms_nml
Header for the FMS namelist which includes all variables directly below the header.

print_memory_usage
Toggles memory usage prints to log. However, in practice turning it on or off does not have any effect.

domain_stack_size
Domain stack size in bytes. This is set to 20000000 in GCHP to be large enough to use very few cores in a high
resolution run. If the domain size is too small then you will get an “mpp domain stack size overflow error” in
advection. If this happens, try increasing the domain stack size in this file.

&fv_core_nml
Header for the finite-volume dynamical core namelist. This is commented out by default unless running on a
stretched grid. Due to the way the file is read, commenting out the header declaration requires an additional
comment character within the string, e.g. #&fv#_core_nml.

do_schmidt
Logical for whether to use Schmidt advection. Set to .true. if using stretched grid; otherwise this entry is
commented out.

stretch_fac
Stretched grid factor, equal to the ratio of grid resolution in targeted high resolution region to the configured run
resolution. This is commented out if not using stretched grid.

target_lat
Target latitude of high resolution region if using stretched grid. This is commented out if not using stretched
grid.

target_lon
Target longitude of high resolution region if using stretched grid. This is commented out if not using stretched
grid.

9.2.8 logging.yml

The logging.yml file is the configuration file for the pFlogger logging package used in GCHP. This package is a
Fortran logger written and maintained by NASA Goddard. The pFlogger package is based on python logging and
contains functions and classes that enable flexible event logging within GCHP components, including MAPL ExtData
which handles input read.

GCHP logging is not the same as GEOS-Chem and HEMCO prints that go to the main GCHP log. It is hierarchical
based on the severity of the event, with the level of severity per component used as criteria to print to the log file. The
logging messages are sent to a separate file from the main GCHP log. The filename is specified in logging.yml as
allPEs.log by default in the definition of the mpi_shared file handler.

Like the python logger, there are five levels of severity used to trigger messages. These are as follows, in order of most
to least severe:

1. CRITICAL

2. ERROR

3. WARNING

4. INFO

44 Chapter 9. Configuration files

GCHP, Release 14.3.0

5. DEBUG

These levels are hierarchical, meaning each level triggers writing messages for all events with greater or equal severity.
For example, if you specify CRITICAL you will get only messages triggered with that criteria since it is the most severe
level. If you instead specify WARNING then you will trigger all events categorized as WARNING, ERROR, and CRITICAL.

Different GCHP components can have different levels of severity. These components are listed in the loggers section
of the file. This helps hone in on problems you are experiencing in a specific component by allowing you to increase
logger messages for one component only. This is particularly useful for debugging the component called CAP.EXTDATA
in logging.yml which corresponds to the MAPL component that handles reading and regridding input files. When
you experience a problem reading input files we recommend that you set the logger level for this component to DEBUG.

In addition to setting severity level per component you can also specify severity level based on processor. There are
two options: root thread only and all threads. The root thread only option is root_level in the configuration file and
will only trigger messages if the event is executed by the root processor. Using this option keeps the log file size down
and can make reading the file easier. We recommend setting this option to DEBUG when investigating problems with
input files.

The all threads option will log events for all processors. Each message will be prefixed by the processor number, e.g.
0000 for the root thread, 0001 for the next, and so on. Using this option can make the file size very large and difficult
to read. However, you can grep the file for a processor number to isolate events of just one thread of interest, such as
the one that appears in error message traceback.

For more information on the GCHP logger, including more advanced features, see documentation at https://github.
com/Goddard-Fortran-Ecosystem/pFlogger/.

9.2.9 HISTORY.rc

HISTORY.rc is the file that configures GCHP’s output. It has the following format

EXPID: OutputDir/GCHP
EXPDSC: GEOS-Chem_devel
CoresPerNode: 30
VERSION: 1

<DEFINE GRID LABELS>

<DEFINE ACTIVE COLLECTIONS>

<DEFINE COLLECTIONS>

EXPID
This is the file prefix for all collections. OutputDir/GCHP means that collections will be to a dire-
cotry named OutputDir/, and the file names will start with GCHP.

CoresPerNode
The number of cores per node for your GCHP simulation.

EXPDSC
Leave this as it is.

VERSION
Leave this as it is.

The format and description of <DEFINE GRID LABELS>, <DEFINE ACTIVE COLLECTIONS>, and and <DEFINE
COLLECTIONS> sections are given below.

9.2. Additional resources 45

https://github.com/Goddard-Fortran-Ecosystem/pFlogger/
https://github.com/Goddard-Fortran-Ecosystem/pFlogger/

GCHP, Release 14.3.0

Defining Grid Labels

You can specify custom grids for your output. For example, a regional 0.05°x0.05° grid covering North America. This
way your collections are regridded online. There are two advantages to doing this:

1. It eliminates the need to regrid your simulation data in a post-processing step.

2. It saves disk space if you are interested in regional output.

Beware that outputting data on a different grid assumes the data is independent of horizontal cell size. The regridding
routines are area-conserving and thus regridded values will only make sense for data that is area-independent. Examples
of data units that are area-independent are mixing ratios (e.g. kg/kg or mol/mol) and emissions rates per area (e.g.
kg/m2/s). Examples of data units that are NOT area-independent are kg/s and m2, or any other unit that implicitly
is per grid cell area. This sort of unit is most common in the meteorology diagnostics, such as Met_AREAM2 and
Met_AD. The values of these arrays will be incorrect in non-native grid output.

You can define as many grids as you want. A collection can define grid_label to select a custom grid. If a collection
does not define grid_label the simulation’s grid is assumed.

Below is the format for the <DEFINE GRID LABELS> section in HISTORY.rc.

GRID_LABELS: MY_FIRST_GRID # My custom grid for C96 output
MY_SECOND_GRID # My custom grid for global 0.5x0.625 output
MY_THIRD_GRID # My custom grid for regional 0.05x0.05 output

::
MY_FIRST_GRID.GRID_TYPE: Cubed-Sphere
MY_FIRST_GRID.IM_WORLD: 96
MY_FIRST_GRID.JM_WORLD: 576 # 576=6x96

MY_SECOND_GRID.GRID_TYPE: LatLon
MY_SECOND_GRID.IM_WORLD: 360
MY_SECOND_GRID.JM_WORLD: 181
MY_SECOND_GRID.POLE: PC # pole-centered
MY_SECOND_GRID.DATELINE: DC # dateline-centered

MY_THIRD_GRID.GRID_TYPE: LatLon
MY_THIRD_GRID.IM_WORLD: 80
MY_THIRD_GRID.JM_WORLD: 40
MY_THIRD_GRID.POLE: XY
MY_THIRD_GRID.DATELINE: XY
MY_THIRD_GRID.LON_RANGE: 0 80 # regional boundaries
MY_THIRD_GRID.LAT_RANGE: -30 10

SPEC NAMES

GRID_TYPE
The type of grid. Valid options are Cubed-Sphere or LatLon.

IM_WORLD
The number of grid boxes in the i-dimension. For a LatLon grid this is the number of longitude
grid-boxes. For a Cubed-Sphere grid this is the cubed-sphere size (e.g., 48 for C48).

JM_WORLD
The number of grid boxes in the j-dimension. For a LatLon grid this is the number of latitude grid-
boxes. For a Cubed-Sphere grid this is six times the cubed-sphere size (e.g., 288 for C48).

POLE
Required if the grid type is LatLon. POLE defines the latitude coordinates of the grid. For global
lat-lon grids the valid options are PC (pole-centered) or PE (polar-edge). Here, “center” or “edge”

46 Chapter 9. Configuration files

GCHP, Release 14.3.0

refers to whether the grid has boxes that are centered on the poles, or whether the grid has boxes with
edges at the poles. For regional grids POLE should be set to XY and the grid will have boxes with
edges at the regional boundaries.

DATELINE
Required if the grid type is LatLon. DATELINE defines the longitude coordinates of the grid. For
global lat-lon grids the valid options are DC (dateline-centered), DE (dateline-edge), GC (grenwich-
centered), or GE (grenwich-edge). If DC or DE, then the longitude coordinates will span (-180°, 180°).
If GC or GE, then the longitude coordinates will span (0°, 360°). Similar to POLE, “center” or “edge”
refer to whether the grid has boxes that are centered at -180° or 0°, or whether the grid has boxes
with edges at -180° or 0°. For regional grids DATELINE should be set to XY and the grid will have
boxes with edges at the regional boundaries.

LON_RANGE
Required for regional LatLon grids. LON_RANGE defines the longitude bounds of the regional grid.

LAT_RANGE
Required for regional LatLon grids. LAT_RANGE defines the latitude bounds of the regional grid.

Defining Active Collections

Collections are activated by defining them in the COLLECTIONS list. For instructions on defining collections, see
Defining Collections.

Below is the format for the <DEFINE ACTIVE COLLECTIONS> section of HISTORY.rc.

COLLECTIONS: 'MyCollection1',
'MyCollection2',

::

This example activates collections named “MyCollection1” and “MyCollection2”.

Defining Collections

A collection is

MyCollection1.template: '%y4%m2%d2_%h2%n2z.nc4',
MyCollection1.format: 'CFIO',
MyCollection1.frequency: 010000
MyCollection1.duration: 240000
MyCollection1.mode: 'time-averaged'
MyCollection1.fields: 'SpeciesConc_O3 ', 'GCHPchem',

'SpeciesConc_NO ', 'GCHPchem',
'SpeciesConc_NO2 ', 'GCHPchem',
'Met_BXHEIGHT ', 'GCHPchem',
'Met_AIRDEN ', 'GCHPchem',
'Met_AD ', 'GCHPchem',

::
<DEFINE MORE COLLECTIONS ...>

Output file configuration

template
This is the file name suffix for the collection. The path to the collection’s files is obtained by con-
catenating EXPID with the collection name and the value of template.

9.2. Additional resources 47

GCHP, Release 14.3.0

format
Defines the file format of the collection. Valid values are 'CFIO' for CF compliant NetCDF (recom-
mended), or 'flat' for GrADS style flat files.

duration
Defines the frequency at which files are generated. The format is HHMMSS. For example, 1680000
means that a file is generated every 168 hours (7 days).

monthly
[optional] Set to 1 for monthly output. One file per month is generated. If mode is time-averaged,
the variables in the collection are 1-month time averages.

duration and frequency are not required if monthly: 1.

timeStampStart
[optional] Only used if mode is 'time-averaged'. If .true. the file is timestamped according to
the start of the accumulation interval (which depends on frequency, ref_date, and ref_time).
If .false. the file is timestamped according to the middle of the accumulation interval. If
timeStampStart is not set then the default value is false.

Sampling configuration

mode
Defines the sampling method. Valid values are 'time-averaged' or 'instantaneous'.

frequency
Defines the time frequency of collection’s data. Said another way, this defines the time separation
(time step) of the time coordinate for the collection. The format is HHMMSS. For example, 010000
means that the collection’s time coordinate will have a 1-hour time step. If frequency is less than
duration multiple time steps are written to each file.

acc_interval
[optional] Only valid if mode is 'time-averaged'. This specifies the length of the time average.
By default it is equal to frequency.

ref_date
[optional] The reference date from which the frequency is based. The format is YYYYMMDD. For
example, a frequency of 1680000 (7 days) with a reference date of 20210101 means that the time
coordinate will be weeks since 2021-01-01. The default value is the simulation’s start date.

ref_time
[optional] The reference time from which the frequency is based. The format is HHMMSS. The default
value is 000000. See ref_date.

fields
Defines the list of fields that this collection should use. The format (per-field) is 'FieldName',
'GridCompName',. For example, 'SpeciesConc_O3', 'GCHPchem', specifies that this collec-
tion should include the SpeciesConc_O3 field from the GCHPchem gridded component.

Fields from multiple gridded components can be included in the same collection. However, a col-
lection must not mix fields that are defined at the center of vertical levels and the edges of vertical
levels (e.g., Met_PMID and Met_PEDGE cannot be included in the same collection).

Variables can be renamed in the output by adding 'your_custom_name', at the end. For exam-
ple, 'SpeciesConc_O3', 'GCHPchem', 'ozone_concentration', would rename the Speci-
esConc_O3 field to “ozone_concentration” in the output file.

Output grid configuration

grid_label
[optional] Defines the grid that this collection should be output on. The lable must match on of the

48 Chapter 9. Configuration files

GCHP, Release 14.3.0

grid labels defined in <DEFINE GRID LABELS>. If grid_label isn’t set then the collection uses
the simulation’s horizontal grid.

conservative
[optional] Defines whether or not regridding to the output grid should use ESMF’s first-order con-
servative method. Valid values are 0 or 1. It is recommended you set this to 1 if you are using
grid_label. The default value is 0.

levels
[optional] Defines the model levels that this collection should use (i.e., a subset of the simulation
levels). The format is a space-separated list of values. The lowest layer is 1 and the highest layer is
72. For example, 1 2 5 would select the first, second, and fifth level of the simulation.

track_file
[optional] Defines the path to a 1D track file along which the collection is sampled. See Output
Along a Track for more info.

recycle_track
[optional] Only valid if a track_file is defined. Specifies that the track file should be reused every
day. If .true. the dates in the track file are automatically forced to the simulation’s current date.
The default value is false.

Other configuration

end_date
[optional] A date at which the collection is deactivated (turned off). By default there is no end date.

end_time
[optional] Time at which the collection is deactivated (turned off) on the end_date.

Example HISTORY.rc configuration

Below is an example HISTORY.rc that configures two output collection

1. 30-min instantaneous concentrations of O3, NO, NO2, and some meteorological parameters for the lowest 10
model levels on a 0.1°x0.1° covering the US. Each file contains one day of data.

2. 24-hour time averages of O3, NO, and NO2 concentrations, NO emissions, and some meteorological parameters.
The horizontal grid is the simulation’s grid. All vertical levels are use. Each file contains one week worth of
data, and files are generated relative to 2017-01-01.

EXPID: OutputDir/GCHP
EXPDSC: GEOS-Chem_devel
CoresPerNode: 6
VERSION: 1

GRID_LABELS: RegionalGrid_US
::

RegionalGrid_US.GRID_TYPE: LatLon
RegionalGrid_US.IM_WORLD: 640
RegionalGrid_US.JM_WORLD: 290
RegionalGrid_US.POLE: XY
RegionalGrid_US.DATELINE: XY
RegionalGrid_US.LON_RANGE: -127 -63
RegionalGrid_US.LAT_RANGE: 23 52

COLLECTIONS: 'Inst30minGases',
(continues on next page)

9.2. Additional resources 49

GCHP, Release 14.3.0

(continued from previous page)

'DailyAvgGasesAndNOEmissions',
::
Inst30minGases.template: '%y4%m2%d2_%h2%n2z.nc4',
Inst30minGases.format: 'CFIO',
Inst30minGases.frequency: 003000
Inst30minGases.duration: 240000
Inst30minGases.mode: 'instantaneous'
Inst30minGases.grid_label: RegionalGrid_US
Inst30minGases.levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Inst30minGases.fields: 'SpeciesConc_O3 ', 'GCHPchem',

'SpeciesConc_NO ', 'GCHPchem',
'SpeciesConc_NO2 ', 'GCHPchem',
'Met_BXHEIGHT ', 'GCHPchem',
'Met_AIRDEN ', 'GCHPchem',
'Met_AD ', 'GCHPchem',
'Met_PS1WET ', 'GCHPchem',

::
DailyAvgGasesAndNOEmissions.template: '%y4%m2%d2_%h2%n2z.nc4',
DailyAvgGasesAndNOEmissions.format: 'CFIO',
DailyAvgGasesAndNOEmissions.ref_date: 20170101
DailyAvgGasesAndNOEmissions.frequency: 240000
DailyAvgGasesAndNOEmissions.duration: 1680000
DailyAvgGasesAndNOEmissions.mode: 'time-averaged'
DailyAvgGasesAndNOEmissions.fields: 'SpeciesConc_O3 ', 'GCHPchem',

'SpeciesConc_NO ', 'GCHPchem',
'SpeciesConc_NO2 ', 'GCHPchem',
'EmisNO_Total ', 'GCHPchem',
'EmisNO_Aircraft ', 'GCHPchem',
'EmisNO_Anthro ', 'GCHPchem',
'EmisNO_BioBurn ', 'GCHPchem',
'EmisNO_Lightning', 'GCHPchem',
'EmisNO_Ship ', 'GCHPchem',
'EmisNO_Soil ', 'GCHPchem',
'EmisNO2_Anthro ', 'GCHPchem',
'EmisNO2_Ship ', 'GCHPchem',
'EmisO3_Ship ', 'GCHPchem',
'Met_BXHEIGHT ', 'GCHPchem',
'Met_AIRDEN ', 'GCHPchem',
'Met_AD ', 'GCHPchem',

::

9.2.10 HEMCO_Diagn.rc

Like in GEOS-Chem Classic, the HEMCO_Diagn.rc file is used to map between HEMCO containers and output file
diagnostic names. However, while all uncommented diagnostics listed in HEMCO_Diagn.rc are output as HEMCO
diagnostics in GEOS-Chem Classic, only the subset also listed in HISTORY.rc are output in GCHP. See the HEMCO
documentation for an overview of the file.

50 Chapter 9. Configuration files

CHAPTER

TEN

CONFIGURE A RUN

As noted earlier, the many configuration files in GCHP can be overwhelming but you should be able to accomplish
most if not all of what you wish to configure from one place in setCommonRunSettings.sh. Use this section to learn
what to change in the run directory based on what you would like to do.

Table of contents

• Configure a run

– Compute resources

∗ Set number of nodes and cores

∗ Change domain stack size

– Basic run settings

∗ Set cubed-sphere grid resolution

∗ Set stretched grid parameters

∗ Turn on/off model components

∗ Change model timesteps

∗ Set simulation start date and duration

– Inputs

∗ Change restart file

∗ Enable restart file to have missing species

∗ Turn on/off emissions inventories

∗ Change input meteorology

∗ Add new emissions files

– Outputs

∗ Output diagnostics data on a lat-lon grid

∗ Output restart files at regular frequency

∗ Turn on/off diagnostics

∗ Set diagnostic frequency, duration, and mode

∗ Add a new diagnostics collection

∗ Generate monthly mean diagnostics

51

GCHP, Release 14.3.0

∗ Prevent overwriting diagnostic files

Note: If there is topic not covered on this page that you would like to see added please create an issue on the GCHP
issues page with your request.

10.1 Compute resources

10.1.1 Set number of nodes and cores

To change the number of nodes and cores for your run you must update settings in two places: (1)
setCommonRunSettings.sh, and (2) your run script. The setCommonRunSettings.sh file contains detailed in-
structions on how to set resource parameter options and what they mean. Look for the Compute Resources section in
the script. Update your resource request in your run script to match the resources set in setCommonRunSettings.sh.

It is important to be smart about your resource allocation. To do this it is useful to understand how GCHP works with
respect to distribution of nodes and cores across the grid. At least one unique core is assigned to each face on the cubed
sphere, resulting in a constraint of at least six cores to run GCHP. The same number of cores must be assigned to each
face, resulting in another constraint of total number of cores being a multiple of six. Communication between the cores
occurs only during transport processes.

While any number of cores is valid as long as it is a multiple of six (although there is an upper limit per resolution),
you will typically start to see negative effects due to excessive communication if a core is handling less than around one
hundred grid cells or a cluster of grid cells that are not approximately square. You can determine how many grid cells
are handled per core by analyzing your grid resolution and resource allocation. For example, if running at C24 with six
cores each face is handled by one core (6 faces / 6 cores) and contains 576 cells (24x24). Each core therefore processes
576 cells. Since each core handles one face, each core communicates with four other cores (four surrounding faces).
Maximizing squareness of grid cells per core is done automatically within setCommonRunSettings.sh if variable
AutoUpdate_NXNY is set to ON in the “DOMAIN DECOMPOSITON” section of the file.

10.1.2 Change domain stack size

For runs at very high resolution or small number of processors you may run into a domains stack size error. This is
caused by exceeding the domains stack size memory limit set at run-time. The error will be apparent from the message
in your log file. If this occurs you can increase the domains stack size in file input.nml.

10.2 Basic run settings

10.2.1 Set cubed-sphere grid resolution

GCHP uses a cubed sphere grid rather than the traditional lat-lon grid used in GEOS-Chem Classic. While regular
lat-lon grids are typically designated as Lat Lon (e.g. 45), cubed sphere grids are designated by the side-length of
the cube. In GCHP we specify this as CX (e.g. C24 or C180). The simple rule of thumb for determining the roughly
equivalent lat-lon resolution for a given cubed sphere resolution is to divide the side length by 90. Using this rule you
can quickly match C24 with about 4x5, C90 with 1 degree, C360 with quarter degree, and so on.

52 Chapter 10. Configure a run

https://github.com/geoschem/GCHP/issues
https://github.com/geoschem/GCHP/issues

GCHP, Release 14.3.0

To change your grid resolution in the run directory edit CS_RES in the “GRID RESOLUTION” section of
setCommonRunSettings.sh. The paramter should be an integer value of the cube side length you wish to use. To
use a uniform global grid resolution make sure STRETCH_GRID is set to OFF in the “STRETCHED GRID” section of
the file. To use a stretched grid rather than a globally uniform grid see the section on this page for setting stretched grid
parameters.

10.2.2 Set stretched grid parameters

GCHP has the capability to run with a stretched grid, meaning one portion of the globe is stretched to fine resolution.
Set stretched grid parameter in setCommonRunSettings.sh section “STRETCHED GRID”. See instructions in that
section of the file. For more detailed information see the stretched grid section of the Supplemental Guides section of
the GCHP ReadTheDocs.

10.2.3 Turn on/off model components

You can toggle most primary GEOS-Chem components that are set in geoschem_config.yml from the
“GEOS-CHEM COMPONENTS” section of setCommonRunSettings.sh. The settings in that file will update
geoschem_config.yml automatically so be sure to check that the settings there are as you intend. For emissions
you should directly edit HEMCO_Config.rc.

10.2.4 Change model timesteps

Model timesteps, including chemistry, dynamic, and RRTMG, are configured within the “TIMESTEPS” section of
setCommonRunSettings.sh. By default, the RRTMG timestep is set to 3 hours. All other GCHP timesteps are
automatically set based on grid resolution. Chemistry and dynamic timesteps are 20 and 10 minutes respectively for
grid resolutions coarser than C180, and 10 and 5 minutes for C180 and higher. Meteorology read frequency for PS2,
SPHU2, and TMPU2 are automatically updated in ExtData.rc accordingly. To change the default timesteps settings
edit the “TIMESTEPS” section of setCommonRunSettings.sh.

10.2.5 Set simulation start date and duration

Unlike GEOS-Chem Classic, GCHP uses a start date and run duration rather than start and end dates. Set simu-
lation start date in cap_restart using string format YYYYMMDD HHmmSS. Set simulation duration in section “SIM-
ULATION DURATION” in setCommonRunSettings.sh using the same format as start date. For example, a
1-year run starting 15 January 2019 would have 20190115 000000 in cap_restart and 00010000 000000 in
setCommonRunSettings.sh.

Under the hood cap_restart is used directly by the MAPL software in GCHP, and setCommonRunSettings.sh
auto-updates the run duration in GCHP config file CAP.rc. Please be aware that MAPL overwrites cap_restart at
the end of the simulation to contain the new start date (end of last run) so be sure to check it every time you run GCHP.

If you poke around the GCHP configuration files you may notice that file CAP.rc contains entries for BEG_DATE and
END_DATE. You can ignore these fields for most cases. BEG_DATE is not used for start date if cap_restart is present.
However, it must be prior to your start date for use in GEOS-Chem’s “ELAPSED_TIME” variable. We set it to year
1960 to be safe. BEG_DATE can also be ignored as long as it is the same as or later than your start date plus run duration.
For safety we set it to year 2200. The only time you would need to adjust these settings is for simulations way in the
past or way into the future.

10.2. Basic run settings 53

GCHP, Release 14.3.0

10.3 Inputs

10.3.1 Change restart file

All GCHP run directories come with symbolic links to initial restart files for commonly used cubed sphere resolutions.
These are located in the Restarts directory in the run directory. All initial restart files contain start date and grid
resolution in the filename using the start date in cap_restart. Prior to running GCHP, either you or your run script
will execute setRestartLink.sh to create a symbolic link gchp_restart.nc4 to point to the appropriate restart
file given configured start date and grid resolution. gchp_restart.nc4 will always be used as the restart file for all
runs since it is specified as the restart file in GCHP.rc.

If you want to change the restart file then you should put the restart file you want to use in the Restarts directory using
the expected filename format with the start date you configure in cap_restart and the grid resolution you configure in
setCommonRunSettings.sh. The expected format is GEOSChem.Restarts.YYYYMMDD_HHmmz.cN.nc4. Running
setRestartLink.sh will update gchp_restart.nc4 to use it.

If you do not want to rename your restart file then you can create a symbolic link in the Restarts folder that points to
it.

Please note that unlike GC-Classic, GCHP does not use a separate HEMCO restart file. All HEMCO restart variables
are included in the main GCHP restart.

10.3.2 Enable restart file to have missing species

Most simulations by default do not allow missing species in the restart file. The model will exit with an error if
species are not found. However, there is a switch in setCommonRunSetting.sh to disable this behavior. This toggle
is located in the section on infrequently changed settings under the header REQUIRE ALL SPECIES IN INITIAL
RESTART FILE. Setting the switch to NO will use background values set in species_database.yml as initial values
for species that are missing.

10.3.3 Turn on/off emissions inventories

Because file I/O impacts GCHP performance it is a good idea to turn off file read of emissions that you do not need.
You can turn individual emissions inventories on or off the same way you would in GEOS-Chem Classic, by setting
the inventories to true or false at the top of configuration file HEMCO_Config.rc. All emissions that are turned off in
this way will be ignored when GCHP uses ExtData.rc to read files, thereby speeding up the model.

For emissions that do not have an on/off toggle at the top of the file, you can prevent GCHP from reading them by
commenting them out in HEMCO_Config.rc. No updates to ExtData.rc would be necessary. If you alternatively
comment out the emissions in ExtData.rc but not HEMCO_Config.rc then GCHP will fail with an error when looking
for the file information.

Another option to skip file read for certain files is to replace the file path in ExtData.rc with /dev/null. However,
if you want to turn these inputs back on at a later time you should preserve the original path by commenting out the
original line.

54 Chapter 10. Configure a run

GCHP, Release 14.3.0

10.3.4 Change input meteorology

Input meteorology source and grid resolution are set in config file ExtData.rc during run directory creation. You will
be prompted to choose between MERRA2 and GEOS-FP, and grid resolution is automatically set to the native grid
lat-lon resolution. If you would like to change the meteorology inputs, for example using a different grid resolution,
then you would need to change the met-field entries in run directory file ExtData.rc after creating a run directory.
Simply open the file, search for the meteorology section, and edit file paths as needed. Please note that while MAPL
will automatically regrid met-fields to the run resolution you specify in setCommonRunSettings.sh, you will achieve
best performance using native resolution inputs.

10.3.5 Add new emissions files

There are two steps for adding new emissions inventories to GCHP. They are (1) add the inventory information to
HEMCO_Config.rc, and (2) add the inventory information to ExtData.rc.

To add inventory information to HEMCO_Config.rc, follow the same rules as you would for adding a new emission
inventory to GEOS-Chem Classic. Note that not all information in HEMCO_Config.rc is used by GCHP. This is
because HEMCO is only used by GCHP to handle emissions after they are read, e.g. scaling and applying hierarchy.
All functions related to HEMCO file read are skipped. This means that you could put garbage for the file path and
units in HEMCO_Config.rc without running into problems with GCHP, as long as the syntax is what HEMCO expects.
However, we recommend that you fill in HEMCO_Config.rc in the same way you would for GEOS-Chem Classic for
consistency and also to avoid potential format check errors.

To add inventory information to ExtData.rc follow the guidelines listed at the top of the file and use existing inven-
tories as examples. Make sure that you stay consistent with the information you put into HEMCO_Config.rc. You can
ignore all entries in HEMCO_Config.rc that are copies of another entry (i.e. mostly filled with dashes). Putting these
in ExtData.rc would result in reading the same variable in the same file twice.

A few common errors encountered when adding new input emissions files to GCHP are:

1. Your input file contains integer values. Beware that the MAPL I/O component in GCHP does not read or write
integers. If your data contains integers then you should reprocess the file to contain floating point values instead.

2. Your data latitude and longitude dimensions are in the wrong order. Lat must always come before lon in your
inputs arrays, a requirement true for both GCHP and GEOS-Chem Classic.

3. Your 3D input data are mapped to the wrong levels in GEOS-Chem (silent error). If you read in 3D data and
assign the resulting import to a GEOS-Chem state variable such as State_Chm or State_Met, then you must flip
the vertical axis during the assignment. See files Includes_Before_Run.H and setting State_Chm%Species
in Chem_GridCompMod.F90 for examples.

4. You have a typo in either HEMCO_Config.rc or ExtData.rc. Errors in HEMCO_Config.rc typically result in
the model crashing right away. Errors in ExtData.rc typically result in a problem later on during ExtData read.
Always try a short run with all debug prints enabled when first implementing new emissions. See the debugging
section of the user manual for more information. Another useful strategy is to find config file entries for similar
input files and compare them against the entry for your new file. Directly comparing the file metadata may also
lead to insights into the problem.

10.3. Inputs 55

GCHP, Release 14.3.0

10.4 Outputs

10.4.1 Output diagnostics data on a lat-lon grid

See documentation in the HISTORY.rc config file for instructions on how to output diagnostic collection on lat-lon
grids, as well as the configuration files section at the top of this page for more information on that file. If outputting on
a lat-lon grid you may also output regional data instead of global. Make sure that whatever grid you choose is listed
under GRID_LABELS and is not commented out in HISTORY.rc.

10.4.2 Output restart files at regular frequency

The MAPL component in GCHP has the option to output restart files (also called checkpoint files) prior
to run end. These periodic restart files are output to the main level of the run directory with filename
gcchem_internal_checkpoint.YYYYMMDD_HHssz.nc4.

Outputting restart files beyond the end of the run is a good idea if you plan on doing a long simulation and you are
not splitting your run into multiple jobs. If the run crashes unexpectedly then you can restart mid-run rather than
start over from the beginning. Update settings for checkpoint restart outputs in setCommonRunSettings.sh section
“MID-RUN CHECKPOINT FILES”. Instructions for configuring restart frequency are included in the file.

10.4.3 Turn on/off diagnostics

To turn diagnostic collections on or off, comment (“#”) collection names in the “COLLECTIONS” list at the top of file
HISTORY.rc. Collections cannot be turned on/off from setCommonRunSettings.sh.

10.4.4 Set diagnostic frequency, duration, and mode

All diagnostic collections that come with the run directory have frequency and duration auto-set within
setCommonRunSettings.sh. The file contains a list of time-averaged collections and instantaneous collections, and
allows setting a frequency and duration to apply to all collections listed for each. Time-avraged collections also have a
monthly mean option (see separate section on this page about monthly mean). To avoid auto-update of a certain col-
lection, remove it from the list in setCommonRunSettings.sh, or set “AutUpdate_Diagnostics” to OFF. See section
“DIAGNOSTICS” within setCommonRunSettings.sh for examples.

10.4.5 Add a new diagnostics collection

Adding a new diagnostics collection in GCHP is the same as for GEOS-Chem Classic netcdf diagnostics. You must
add your collection to the collection list in HISTORY.rc and then define it further down in the file. Any 2D or 3D arrays
that are stored within GEOS-Chem objects State_Met, State_Chm, or State_Diag, may be included as fields in a
collection. State_Met variables must be preceded by “Met_”, State_Chm variables must be preceded by “Chem_”,
and State_Diag variables should not have a prefix. Collections may have a combination of 2D and 3D variables, but
all 3D variables must have the same number of levels. See the HISTORY.rc file for examples.

56 Chapter 10. Configure a run

GCHP, Release 14.3.0

10.4.6 Generate monthly mean diagnostics

You can toggle monthly mean diagnostics on/off from within setCommonRunSettings.sh in the “DIAGNOSTICS”
section if you also set auto-update of diagnostics it that file to on. All time-averaged diagnostic collections will then
automatically be configured to compute monthly mean. Alternatively, you can edit HISTORY.rc directly and set the
“monthly” field to value 1 for each collection you wish to output monthly diagnostics for.

10.4.7 Prevent overwriting diagnostic files

By default all GCHP run directories are configured to allow overwriting diagnostics files present in OutputDir over the
course a simulation. You may disable this feature by setting Allow_Overwrite=.false. at the top of configuration
file HISTORY.rc.

10.4. Outputs 57

GCHP, Release 14.3.0

58 Chapter 10. Configure a run

CHAPTER

ELEVEN

OUTPUT FILES

A successful GCHP run produces three categories of output files: diagnostics, restarts (also called checkpoints), and
logs. Diagnostic and restart files are always in netCDF4 format, and logs are always ascii viewable with any text editor.
Diagnostic files are output to the OutputDir directory in the run directory. The end-of-run restart file is output to the
Restarts directory. All other output files, including periodic checkpoints if enabled, are saved to the main level of
the run directory.

Note: It is important to be aware that GCHP 3D data files in this version of GCHP have two different vertical dimension
conventions. Restart files and Emissions diagnostic files are defined with top-of-atmospheric level equal to 1. All other
data files, meaning all diagnostic files that are not Emissions collections, are defined with surface level equal to 1.
This means files may be vertically flipped relative to each other. This should be taken into account when doing data
visualization and analysis using these files.

11.1 File descriptions

Below is a summary of all GCHP output files that you may encounter depending on your run directory configuration.

gchp.YYYYMMSS_HHmmSSz.log

Standard output log file of GCHP, including both GEOS-Chem and HEMCO. The date in the filename is the start
date of the simulation. Using this file is technically optional since it appears only in the run script. However, the
advantage of sending GCHP standard output to this file is that the logs of consecutive runs will not be over-written
due to the date in the filename. Note that the file contains HEMCO log information as well as GEOS-Chem.
Unlike in GEOS-Chem Classic there is no HEMCO.log in GCHP.

batch job file, e.g. slurm-jobid.out

If you use a job scheduler to submit GCHP as a batch job then you will have a job log file. This file will contain
output from your job script unless sent to a different file. If your run crashes then the MPI error messages and
error traceback will also appear in this file.

allPES.log

GCHP logging output based on configuration in logging.yml. Treat this file as a debugging tool to help di-
agnose problems in MAPL, particularly the ExtData component of the model which handles input reading and
regridding.

logfile.000000.out

Log file for advection. It includes information such as the domain stack size, stretched grid factors, and FV3
parameters used in the run.

59

GCHP, Release 14.3.0

cap_restart

This file is both input and output. As an input file it contains the simulation start date. After a successful run the
content of the file is updated to the simulation end date. As an output file it is therefore the input file for the next
run if running GCHP simulations consecutively in time.

Restarts/GEOSChem.Restart.YYYYMMDD_HHmmz.cN.nc4

GCHP restart file output at the end of the run. This file is actually the GCHP end-of-run checkpoint file that
is moved and renamed as part of the run script. Unless including the code to do that in your run script you
will instead get gcchem_internal_checkpoint in the main run directory. Moving and renaming is a better
option because (1) it includes the datetime to prevent overwriting upon consecutive runs, (2) it enables using
the gchp_restart.nc4 symbolic link in the main run directory to automatically point to the correct restart file
based on start date and grid resolution, and (3) it minimizes clutter in the run directory. Please note that the
vertical level dimension in all GCHP restart files is positive down, meaning level 1 is top-of-atmosphere.

gcchem_internal_checkpoint.YYYYMMDD_HHmmz.nc4

Optional restart files output mid-run. In order to generate these you must configure the run directory to output
with a specific frequency that is less than the duration of your run. Note that unlike the end-of-run restart file,
these files are not copied to Restarts in your run script and are not renamed.

OutputDir/GEOSChem.HistoryCollectionName.YYYYMMDD_HHmmz.nc4

GCHP diagnostic data files. Each file contains the collection name configured in HISTORY.rc and the datetime
of the first data in the file. For time-averaged data files the datetime is the start of the averaging period. Please
note that the vertical level dimension in GCHP diagnostics files is collection-dependent. Data are positive down,
meaning level 1 is top-of-atmosphere, for the Emissions collection. All other collections are positive up, meaning
level 1 is surface.

HistoryCollectionName.rcx

Summary of settings in HISTORY.rc per collection.

EGRESS

This file is empty and can be ignored. It is an artifact of the MAPL software used in GCHP.

warnings_and_errors.log

This file is empty and can be ignored. It is an artifact of configuration in logging.yml.

11.2 Memory

Memory statistics are printed to the GCHP log each model timestep. As discussed in the run directory configuration
section of this user guide, this includes percentage of memory committed, percentage of memory used, total used
memory (MB), and total swap memory (MB) by default.

To inspect the memory usage of GCHP you can grep the output log file for string Date: and Mem/Swap. For exam-
ple, grep "Date:|Mem/Swap" gchp.log. The end of the line containing date and time shows memory committed
and used. For example, 42.8% : 40.4% Mem Comm:Used indicates 42.8% of memory available is committed and
40.4% of memory is actually used. The total memory used is in the next line, for example Mem/Swap Used (MB) at
MAPL_Cap:TimeLoop= 1.104E+05 0.000E+00. The first value is the total memory used in MB, and the second line
is swap (virtual) memory used. In this example GCHP is using around 110 gigabytes of memory with zero swap.

These memory statistics are useful for assessing how much memory GCHP is using and whether the memory usage
grows over time. If the memory usage goes up throughout a run then it is an indication of a memory leak in the model.
The memory debugging option is useful for isolating the memory leak by determining if there if it is in GEOS-Chem
or advection.

60 Chapter 11. Output Files

GCHP, Release 14.3.0

11.3 Timing

Timing of GCHP components is done using MAPL timers. A summary of all timing is printed to the GCHP log at
the end of a run. Configuring timers from the run directory is not currently possible but will be an option in a future
version. Until then a complete summary of timing will always be printed to the end of the log for a successful GCHP
run. You can use this information to help diagnose timing issues in the model, such as extra slow file read due to system
problems.

The timing output written by MAPL is somewhat cryptic but you can use this guide to decipher it. Timing is broken
in up into several sections.

1. GCHPctmEnv, the environment component that facilitates exchange between GEOS-Chem and FV3 advection

2. GCHPchem, the GEOS-Chem component containing chemistry, mixing, convection, emissions and deposition

3. DYNAMICS, the FV3 advection component

4. GCHP, the parent component of GCHPctmEnv, GCHPchem, and DYNAMICS, and sibling component to HIST
and EXTDATA

5. HIST, the MAPL History component for writing diagnostics

6. EXTDATA, the MAPL ExtData component for processing inputs, including reading and regridding

7. Total model and MPI communicator run times broken into user, system, and total times

8. Full summary of all major model components, including core routines SetService, Initialize, Run, and Finalize

9. Model throughput in units of days per day

Each of the six gridded component sections contains two sub-sections. The first subsection shows timing statistics for
core gridded component processes and their child functions. These statistics include number of execution cycles as well
as inclusive and exclusive total time and percent time. Inclusive refers to the time spent in that function including
called child functions. Exclusive refers to the time spent in that function excluding called child functions.

The second subsection shows from left to right minimum, mean, and maximum processor times for the gridded com-
ponent and its MAPL timers. If you are interested in timing for a specific part of GEOS-Chem then use the timers
in this section for GCHPchem, specifically the ones that start with prefix GC_. For chemistry you should look at timer
GC_CHEM which includes the calls to compute overhead ozone, set H2O, and calling the chemistry driver routine.

Beware that the timers can be difficult to interpret because the component times do not always add up to the total run
time. This is likely due to load imbalance where processors wait (timed in MAPL) while other processors complete
(timed in other processes). You can get a sense of how large the wait time is by comparing the Exclusive time to
the Inclusive time. If the former is smaller than the latter then the bulk of time is spent in a sub-process and the
Exclusive time may be at least partially due to wait time.

If you are interested in changing the definitions of GCHP timers, or adding a new one, you will need to edit the source
code. Toggling GC_ timers on and off are mostly in file geos-chem/Interfaces/GCHP/gchp_chunk_mod.F90,
but also in geos-chem/Interfaces/GCHP/Chem_GridCompMod.F90, using MAPL subroutines MAPL_TimerOn and
MAPL_TimerOff. When in doubt about what a timer is measuring it is best to check the source code to see what calls
it is wrapping.

11.3. Timing 61

GCHP, Release 14.3.0

62 Chapter 11. Output Files

CHAPTER

TWELVE

PLOT OUTPUT DATA

With the exception of the restart file, all GCHP output netCDF files may be viewed with Panoply software freely
available from NASA GISS. In addition, python works very well with all GCHP output.

12.1 Panoply

Panoply is useful for quick and easy viewing of GCHP output. Panoply is a grahpical program for plotting geo-
referenced data like GCHP’s output. It is an intuitive program and it is easy to set up.

You can read more about Panoply, including how to install it, here.

63

https://www.giss.nasa.gov/tools/panoply/

GCHP, Release 14.3.0

Some suggestions

• If you can mount your cluster’s filesystem as a Network File System (NFS) on your local machine, you can
install Panoply on your local machine and view your GCHP data through the NFS.

• If your cluster supports a graphical interface, you could install Panoply (administrative priviledges not
necessary, provided Java is installed) yourself.

• Alternatively, you could install Panoply on your local machine and use scp or similar to transfer files back
and forth when you want to view them.

Note: To get rid of the missing value bands along face edges, uncheck ‘Interpolate’ (turn interpolation off) in the
Array(s) tab.

12.2 Python

To make a basic plot of GCHP data using Python you will need the following libraries:

• cartopy >= 0.19 (0.18 won’t work – see cartopy#1622)

• xarray

• netcdf4

If you use conda you can install these packages like so

$ conda activate your-environment-name
$ conda install cartopy>=0.19 xarray netcdf4 -c conda-forge

Here is a basic example of plotting cubed-sphere data:

• Sample data: GCHP.SpeciesConc.20210508_0000z.nc4

import matplotlib.pyplot as plt
import cartopy.crs as ccrs # cartopy must be >=0.19
import xarray as xr

ds = xr.open_dataset('GCHP.SpeciesConc.20210508_0000z.nc4') # see note below for␣
→˓download instructions

plt.figure()
ax = plt.axes(projection=ccrs.EqualEarth())
ax.coastlines()
ax.set_global()

norm = plt.Normalize(1e-8, 7e-8)

for face in range(6):
x = ds.corner_lons.isel(nf=face)
y = ds.corner_lats.isel(nf=face)
v = ds.SpeciesConc_O3.isel(time=0, lev=23, nf=face)
ax.pcolormesh(x, y, v, norm=norm, transform=ccrs.PlateCarree())

plt.show()

64 Chapter 12. Plot Output Data

https://github.com/SciTools/cartopy/pull/1622
https://docs.conda.io/en/latest/

GCHP, Release 14.3.0

Note: The grid-box corners should be used with pcolormesh() because the grid-boxes are not regular (it’s a curvi-
linear grid). This is why we use corner_lats and corner_lons in the example above.

You may also use the GCPy python toolkit to work with GCHP files. For more information see https://github.com/
geoschem/gcpy/.

12.2. Python 65

https://github.com/geoschem/gcpy/
https://github.com/geoschem/gcpy/

GCHP, Release 14.3.0

66 Chapter 12. Plot Output Data

CHAPTER

THIRTEEN

DEBUGGING

This page provides strategies for investigating errors encountered while using GCHP.

13.1 Configure errors

The most basic configuration problem occurs if you forget to run git submodule update --init --recursive
after cloning the GCHP repository. Check that you did this correctly. Other configuration problems usually have to
do with libraries. Check that you have libraries loaded and that they meet the requirements for GCHP. Also check the
logs printed to the build directory, in particular CMakeCache.txt. That file lists the directories of the libraries that
are used. Check that these paths are what you intend to use. Sometimes on compute clusters there can be multiple
instances of the same library loaded, such as when using a spack-built library when the cluster already has a different
version of the same library. Check the library paths carefully to look for inconsistencies.

13.2 Build-time errors

Usually build-time errors are self-explanatory, with an error message indicating the file, line number, and reason for
the error. Sometimes you need to do some digging in the build log to find where the error is. Searching for string “
error “ (note the space before and after) usually hones in on the problem fast. Read the error message carefully and
then find the file and line number specified. If it is not clear what the error is even from the error message then you
can try doing a string search on the GCHP GitHub issues page, or on the web in general. If the error is occuring with
an out-of-the-box GCHP version then the issue is likely a library. Check that your libraries meet the requirements of
GCHP as specified on ReadTheDocs. Also check your ESMF version and make sure you build ESMF using the same
libraries with which you are building GCHP.

13.3 Run-time errors

The first step in debugging run-time errors is always to look at the logs. First check the gchp.*.log (* is the start
time of the run) to see how far the run got. It is possible the error was trapped by HEMCO or GEOS-Chem in which
case there will likey be error messages explaining the problem. Also check the standard error log. If running on a job
scheduler this would be a separate file from the main GCHP log file. The error should include a traceback of the error,
meaning filenames and line numbers where the error occurred, moving up the call stack from deepest to highest. Go
to the first file listed and find the line number. Also read the error message in the traceback. Try to determine if the
error is in GEOS-Chem, HEMCO, MAPL, or somewhere else. If the error is in MAPL then you should check output
file allPEs.log. This log provides basic information on the MAPL run, which includes general GCHP infrastructure
setup as well as model I/O.

67

GCHP, Release 14.3.0

13.3.1 Recompile with debug flags

If you are running into a segmentation fault or the model appears to hang within GEOS-Chem then you should try build-
ing with GEOS-Chem debug flags turned on. Recompile using debug flags by setting -DCMAKE_BUILD_TYPE=Debug
during the configure step. See the section of the user guide on compiling GCHP for more guidance on how to do this.
Once you rebuild and run there will be more information in the logs if the problem is an out-of-bounds error or floating
point exception.

13.3.2 Enable maximum print output for GEOS-Chem and HEMCO

To more information about the execution within GEOS-Chem and HEMCO you can enable additional prints to the
main GCHP log within geoschem_config.yml and HEMCO_Config.rc.

1. Activate GEOS-Chem verbose output by editing geoschem_config.yml as shown below. This will tell GEOS-
Chem to send extra printout to the gchp.YYYYMMDD_hhmmz.log file.

#==
Simulation settings
#==
simulation:
... etc not shown ...
verbose:
activate: false <=== Change this to true
on_cores: root # Allowed values: root all

2. Activate HEMCO verbose output by editing HEMCO_Config.rc as shown below. This will tell HEMCO to send
extra printout to the gchp.YYYYMMDD_hhmmz.log file.

###
BEGIN SECTION SETTINGS
###

... etc not shown ...
Verbose: false <=== Change this to true

68 Chapter 13. Debugging

GCHP, Release 14.3.0

13.3.3 Enable ESMF error log output

If the error is in MAPL then check if the call where the error occurs contains “ESMF”. If the error is occuring in a call
to ESMF then you should enable ESMF error log files in GCHP. Look for file ESMF.rc in your run directory. Open it
and set the logKindFlag parameter to ESMF_LOGKIND_MULTI_ON_ERROR and run again. You should then get ESMF
error log files upon rerun. There will be one log file per processor. More often than not the ESMF error message will
appear in every file.

13.3.4 Enable maximum print output for MAPL

If you see ExtData in the error traceback then the problem has to do with input files. It is common to run into errors
when adding new input files because of strict rules for import files within MAPL. If there is not enough information
in allPEs.log to determine what the input file problem is then you should enable additional MAPL prints and rerun.
This is mostly recommended for input file issues because MAPL ExtData is where most of the debug logging statements
are currently implemented. However, problems elsewhere in MAPL might have useful debugging error messages as
well. You can also go into the code and add your own by searching for examples with string lgr%debug. Contact the
GEOS-Chem Support Team if you need help deciphering the resulting log output.

1. Activate the CAP.EXTDATA and MAPL debug loggers by editing the logging.yml configuration file as shown
below. This will send all MAPL debug-level logging prints to the allPEs.log file.

loggers:

... etc not shown ...

MAPL:
handlers: [mpi_shared]
level: WARNING <=== Change this to DEBUG
root_level: INFO <=== Change this to DEBUG

CAP.EXTDATA:
handlers: [mpi_shared]
level: WARNING <=== Change this to DEBUG
root_level: INFO <=== Change this to DEBUG

13.3.5 Read the code

If log error messages are not helpful in determining the problem then you may be able to solve it by reading the code.
Follow the traceback to find the file and line number where the code crashed. You can find the location of files in GCHP
by using the unix find command from the top-level source code directory, e.g. find . -name aerosol_mod.F90
Once you find the file and the line where the model fails, read the code above it to try to get a sense of the context of
where it crashed. This will give clues as to why it had a problem and may give you ideas of what to do to try to fix it.
You can also add your own debug code, recompile, and run.

13.3. Run-time errors 69

GCHP, Release 14.3.0

13.3.6 Inspecting memory

Memory statistics are printed to the GCHP log each model timestep by default. This includes percentage of memory
committed, percentage of memory used, total used memory (MB), and total swap memory (MB). This information is
always printed and is not configurable from the run directory. However, additional memory prints may be enabled by
changing the value set for variable MEMORY_DEBUG_LEVEL in run directory file GCHP.rc. Setting this to a value greater
than zero will print out total used memory and swap memory before and after run methods for gridded components
GCHPctmEnv, FV3 advection, and GEOS-Chem. Within GEOS-Chem, total and swap memory will also be printed
before and after subroutines to run GEOS-Chem, perform chemistry, and apply emissions. For more information about
inspecting memory see the output files section of this user guide.

13.3.7 Inspecting timing

Model timing information is printed out at the end of each GCHP run. Check the end of the GCHP log for a breakdown
of component timing.

70 Chapter 13. Debugging

CHAPTER

FOURTEEN

LOAD SOFTWARE INTO YOUR ENVIRONMENT

This supplemental guide describes the how to load the required software dependencies for GEOS-Chem and HEMCO into
your computational environment.

14.1 On the Amazon Web Services Cloud

All of the required software dependencies for GEOS-Chem and HEMCO will be included in the Amazon Machine Image
(AMI) that you use to initialize your Amazon Elastic Cloud Compute (EC2) instance. For more information, please
see our our GEOS-Chem cloud computing tutorial.

14.2 On a shared computer cluster

If you plan to use GEOS-Chem or HEMCO on a shared computational cluster (e.g. at a university or research institution),
then there is a good chance that your IT staff will have already installed several of the required software dependencis.

Depending on your system’s setup, there are a few different ways in which you can activate these software pacakges in
your computational environment, as shown below.

14.2.1 1. Check if libraries are available as modules

Many high-performance computing (HPC) clusters use a module manager such as Lmod or environment-modules to
load software packages and libraries. A module manager allows you to load different compilers and libraries with
simple commands.

One downside of using a module manager is that you are locked into using only those compiler and software versions
that have already been installed on your system by your sysadmin or IT support staff. But in general, module managers
succeed in ensuring that only well-tested compiler/software combinations are made available to users.

Tip: Ask your sysadmin or IT support staff for the software loading instructions specific to your system.

71

http://geos-chem-cloud.readthedocs.io
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/

GCHP, Release 14.3.0

1a. Module load example

The commands shown below are specific to the Harvard Cannon cluster, but serve to demonstrate the process. Note that
the names of software packages being loaded may contain version numbers and/or ID strings that serve to differentiate
one build from another.

$ module load gcc/10.2.0-fasrc01 # gcc / g++ / gfortran
$ module load openmpi/4.1.0-fasrc01 # MPI
$ module load netcdf-c/4.8.0-fasrc01 # netcdf-c
$ module load netcdf-fortran/4.5.3-fasrc01 # netcdf-fortran
$ module load flex/2.6.4-fasrc01 # Flex lexer (needed for KPP)
$ module load cmake/3.25.2-fasrc01 # CMake (needed to compile)

Note that it is often not necessary to load all modules. For example, loading netcdf-fortran will also cause its
dependencies (such as netcdf-c, hdf5, etc.) to also be loaded into your environment.

Here is a summary of what the above commands do:

module purge

Removes all previously loaded modules

module load git/...

Loads Git (version control system)

module load gcc/...

Loads the GNU Compiler Collection (suite of C, C++, and Fortran compilers)

module load openmpi/...

Loads the OpenMPI library (a dependency of netCDF)

module load netcdf/..

Loads the netCDF library

Important: Depending on how the netCDF libraries have been installed on your system, you might also need
to load the netCDF-Fortran library separately, e.g.:

module load netcdf-fortran/...

module load perl/...

Loads Perl (scripting language)

module load cmake/...

Loads Cmake (needed to compile GEOS-Chem)

module load flex/...

Loads the Flex lexer (needed for The Kinetic PreProcessor).

72 Chapter 14. Load software into your environment

https://kpp.readthedocs.io

GCHP, Release 14.3.0

14.2.2 2. Check if Spack-built libraries are available

If your system doesn’t have a module manager installed, check to see if the required libraries for GEOS-Chem and HEMCO
were built with the Spack package manager. Type

$ spack find

to locate any Spack-built software libraries on your system. If there Spack-built libraries are found, you may present,
you may load them into your computational environment with spack load commands such as:

$ spack load gcc@10.2.0
$ spack load netcdf-c%gcc@10.2.0
$ spack load netcdf-fortran%gcc@10.2.0
... etc ...

When loading a Spack-built library, you can specify its version number. For example, spack load gcc@10.2.0 tells
Spack to load the GNU Compiler Collection version 10.2.0.

You may also specify a library by the compiler it was built with. For example, spack load
netcdf-fortran%gcc@10.2.0 tells Spack to load the version of netCDF-Fortran that was built with GNU
Compiler Collection version 10.2.0.

These specification methods are often necessary to select a given library in case there are several available builds to
choose from.

We recommend that you place spack load commands into an environment file.

If a Spack environment has been installed on your system, type:

spack env activate -p ENVIRONMENT-NAME

to load all of the libraries in the environment together.

To deactivate the environment, type:

spack deactivate

14.2.3 3. Check if libaries have been manually installed

If your computer system does not use a module manager and does not use Spack, check for a manual library installation.
Very often, common software libraries are installed into standard locations (such as the /usr/lib or /usr/local/lib
system folders). Ask your sysadmin for more information.

Once you know the location of the compiler and netCDF libraries, you can set the proper environment variables for
GEOS-Chem and HEMCO.

14.2.4 4. If there are none of these, install them with Spack

If your system has none of the required software packages that GEOS-Chem and HEMCO need, then we recommend
that you use Spack to build the libraries yourself . Spack makes the process easy and will make sure that all software
dependences are resolved.

Once you have installed the libraries with Spack, you can load the libraries into your computational environment as
described above.

14.2. On a shared computer cluster 73

https://geos-chem.readthedocs.io/getting-started/login-env-files.html
https://spack-tutorial.readthedocs.io/en/latest/tutorial_environments.html

GCHP, Release 14.3.0

74 Chapter 14. Load software into your environment

CHAPTER

FIFTEEN

BUILD REQUIRED SOFTWARE WITH SPACK

This page has instructions for building dependencies for GEOS-Chem Classic, GCHP, and HEMCO These are the
software libraries that are needed to compile and execute these programs.

Before proceeding, please also check if the dependencies for GEOS-Chem, GCHP, and HEMCO are already found on
your computational cluster or cloud environment. If this is the case, you may use the pre-installed versions of these
software libraries and won’t have to install your own versions.

For more information about software dependencies, see:

• GEOS-Chem Classic software requirements

• GCHP software requirements

• HEMCO software requirements

15.1 Introduction

In the sections below, we will show you how to build a single software environment containing all software depen-
dencies for GEOS-Chem Classic, GCHP, and HEMCO. This will be especially of use for those users working on a
computational cluster where these dependencies have not yet been installed.

We will be using the Spack package manager to download and build all required software dependencies for GEOS-
Chem Classic, GCHP and HEMCO.

Note: Spack is not the only way to build the dependencies. It is possible to download and compile the source code for
each library manually. Spack automates this process, thus it is the recommended method.

You will be using this workflow:

1. Install Spack and do first-time setup

2. Clone a copy of GCClassic, GCHP, or HEMCO

3. Install the recommended compiler

4. Build GEOS-Chem dependencies and useful tools

5. Add spack load commands to your environment file

6. Clean up

75

https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io
https://geos-chem.readthedocs.io/en/stable/gcc-guide/01-startup/system-req-soft.html
https://gchp.readthedocs.io/en/stable/getting-started/requirements.html#software-requirements
https://hemco.readthedocs.io/en/stable/hco-sa-guide/software.html
https://spack.readthedocs.io

GCHP, Release 14.3.0

15.2 Install Spack and do first-time setup

Decide where you want to install Spack (aka the Spack root directory). A few details you should consider are:

• The Spack root directory will be ~5-10 GB. Keep in mind that some computational clusters restrict the size of
your home directory (aka ${HOME}) to a few GB).

• This Spack root directory cannot be moved. Instead, you will have to reinstall Spack to a different directory
location (and rebuild all software packages).

• The Spack root directory should be placed in a shared drive if several users need to access it.

Once you have chosen an location for the Spack root directory, you may continue with the Spack download and setup
process.

Important: Execute all commands in this tutorial from the same directory. This is typically one directory level higher
than the Spack root directory.

For example, if you install Spack as a subdirectory of ${HOME}, then you will issue all commands from ${HOME}.

Use the commands listed below to install Spack and perform first-time setup. You can copy-paste these commands, but
lookout for lines marked with a # (modifiable) ... comment as they might require modification.

$ cd ${HOME} # (modifiable) cd to the install location you␣
→˓chose

$ git clone -c feature.manyFiles=true https://github.com/spack/spack.git # download␣
→˓Spack

$ source spack/share/spack/setup-env.sh # Load Spack

$ spack external find # Tell Spack to look for existing software

$ spack compiler find # Tell Spack to look for existing complilers

Note: If you should encounter this error:

$ spack external find
==> Error: 'name'

then Spack could not find any external software on your system.

Spack searches for executables that are located within your search path (i.e. the list of directories contained in your
$PATH environment variable), but not within software modules. Because of this, you might have to load a software
package into your environment before Spack can detect it. Ask your sysadmin or IT staff for more information about
your system’s specific setup.

After the first-time setup has been completed, an environment variable named SPACK_ROOT, will be created in your
Unix/Linux environment. This contains to the absolute path of the Spack root directory. Use this command to view the
value of SPACK_ROOT:

$ echo ${SPACK_ROOT}
/path/to/home/spack # Path to Spack root, assumes installation to a subdir of ${HOME}

76 Chapter 15. Build required software with Spack

GCHP, Release 14.3.0

15.3 Clone a copy of GCClassic, GCHP, or HEMCO

The GCClassic, GCHP , and HEMCO repositories each contain a spack/ subdirectory with customized Spack con-
figuration files modules.yaml and packages.yaml. We have updated these YAML files with the proper settings in
order to ensure a smooth software build process with Spack.

First, define the model, scope_dir, and scope_args environment variables as shown below.

$ model=GCClassic # Use this if you will be working with GEOS-Chem Classic
$ model=GCHP # Use this if you will be working with GCHP
$ model=HEMCO # Use this if you will be working with HEMCO standalone

$ scope_dir="${model}/spack" # Folder where customized YAML files are stored

$ scope_args="-C ${scope_dir}" # Tell spack to for custom YAML files in scope_dir

You will use these environment variables in the steps below.

When you have completed this step, download the source code for your preferred model (e.g. GEOS-Chem Classic,
GCHP, or HEMCO standalone):

$ git clone --recurse-submodules https://github.com/geoschem/${model}.git

15.4 Install the recommended compiler

Next, install the recommended compiler, gcc (aka the GNU Compiler Collection). Use the scope_args environment
variable that you defined in the previous step.

$ spack ${scope_args} install gcc # Install GNU Compiler Collection

Note: Requested version numbers for software packages (including the compiler) are listed in the ${scope_dir}/
packages.yaml file. We have selected software package versions that have been proven to work together. You should
not have to change any of the settings in ${scope_dir}/packages.yaml.

As of this writing, the default compiler is gcc 10.2.0 (includes C, C++, and Fortran compilers). We will upgrade to
newer compiler and software package versions as necessary.

The compiler installation should take several minutes (or longer if you have a slow internet connection).

Register the compiler with Spack after it has been installed. This will allow Spack to use this compiler to build other
software packages. Use this command:

$ spack compiler add $(spack location -i gcc) # Register GNU Compiler Collection

You will then see output similar to this:

==> Added 1 new compiler to /path/to/home/.spack/linux/compilers.yaml
gcc@X.Y.Z

==> Compilers are defined in the following files:
/path/to/home/.spack/linux/compilers.yaml

where

15.3. Clone a copy of GCClassic, GCHP, or HEMCO 77

https://github.com/geoschem/GCClassic
https://github.com/geoschem/GCHP
https://github.com/geoschem/HEMCO
https://gcc.gnu.org/onlinedocs/10.2.0/

GCHP, Release 14.3.0

• /path/to/home indicates the absolute path of your home directory (aka ${HOME})

• X.Y.Z indicates the version of the GCC compiler that you just built with Spack.

Tip: Use this command to view the list of compilers that have been registered with Spack:

$ spack compiler list

Use this command to view the installation location for a Spackguide-built software package:

$ spack location -i <package-name>

15.5 Build GEOS-Chem dependencies and useful tools

Once the compiiler has been built and registered, you may proceed to building the software dependencies for GEOS-
Chem Classic, GCHP, and HEMCO.

The Spack installation commands that you will use take the form:

$ spack ${scope_args} install <package-name>%gcc^openmpi

where

• ${scope_args} is the environment variable that you defined above;

• <package-name> is a placeholder for the name of the software package that you wish to install;

• %gcc tells Spack that it should use the GNU Compiler Collection version that you just built;

• ^openmpi tells Spack to use OpenMPI when building software packages. You may omit this setting for packages
that do not require it.

Spack will download and build <package-name> plus all of its dependencies that have not already been installed.

Note: Use this command to find out what other packages will be built along with <package-name>:

$ spack spec <package-name>

This step is not required, but may be useful for informational purposes.

Use the following commands to build dependencies for GEOS-Chem Classic, GCHP, and HEMCO, as well as some
useful tools for working with GEOS-Chem data:

1. Build the esmf (Earth System Model Framework), hdf5, netcdf-c, netcdf-fortran, and openmpi packages:

$ spack ${scope_args} install esmf%gcc^openmpi

The above command will build all of the above-mentioned packages in a single step.

Note: GEOS-Chem Classic does not require esmf. However, we recommend that you build ESMF anyway so
that it will already be installed in case you decide to use GCHP in the future.

78 Chapter 15. Build required software with Spack

GCHP, Release 14.3.0

2. Build the cdo (Climate Data Operators) and nco (netCDF operators) packages. These are command-line tools
for editing and manipulating data contained in netCDF files.

$ spack ${scope_args} install cdo%gcc^openmpi

$ spack ${scope_args} install nco%gcc^openmpi

3. Build the ncview package, which is a quick-and-dirty netCDF file viewer.

$ spack ${scope_args} install ncview%gcc^openmpi

4. Build the flex (Fast Lexical Analyzer) package. This is a dependency of the Kinetic PreProcessor (KPP), with
which you can update GEOS-Chem chemical mechanisms.

$ spack ${scope_args} install flex%gcc

Note: The flex package does not use OpenMPI. Therefore, we can omit ^openmpi from the above command.

At any time, you may see a list of installed packages by using this command:

$ spack find

15.6 Add spack load commands to your environment file

We recommend “sourcing” the load_script that you created in the previous section from within an environment file.
This is a file that not only loads the required modules but also defines settings that you need to run GEOS-Chem Classic,
GCHP, or the HEMCO standalone.

Please see the following links for sample environment files.

• Sample GEOS-Chem Classic environment file

• Sample GCHP environment file

• Sample HEMCO environment file

Copy and paste the code below into a file named ${model}.env (using the ${model} environment variable that you
defined above). Then replace any existing module load commands with the following code:

#===
Load Spackguide-built modules
#===

Setup Spack if it hasn't already been done
${SPACK_ROOT} will be blank if the setup-env.sh script hasn't been called.
(modifiable) Replace "/path/to/spack" with the path to your Spack root directory
if [["x${SPACK_ROOT}" == "x"]]; fi

source /path/to/spack/source/spack/setup-env.sh
fi

(continues on next page)

15.6. Add spack load commands to your environment file 79

https://kpp.readthedocs.io
https://geos-chem.readthedocs.io/en/stable/gcc-guide/01-startup/login-env-files-gnu.html
https://github.com/geoschem/geos-chem/blob/main/run/GCHP/runScriptSamples/operational_examples/harvard_cannon/gchp.gfortran10.2_openmpi4_cannon.env
https://hemco.readthedocs.io/en/stable/hco-sa-guide/login-env.html

GCHP, Release 14.3.0

(continued from previous page)

Load esmf, hdf5, netcdf-c, netcdf-fortran, openmpi
spack load esmf%gcc^openmpi

Load netCDF packages (cdo, nco, ncview)
spack load cdo%gcc^openmpi
spack load nco%gcc^openmpi
spack load ncview

Load flex
spack load flex

#===
Set environment variables for compilers
#===
export CC=gcc
export CXX=g++
export FC=gfortran
export F77=gfortran

#===
Set environment variables for Spack-built modules
#===

openmpi (needed for GCHP)
export MPI_ROOT=$(spack-location -i openmpi%gcc)

esmf (needed for GCHP)
export ESMF_DIR=$(spack location -i esmf%gcc^openmpi)
export ESMF_LIB=${ESMF_DIR}/lib
export ESMF_COMPILER=gfortran
export ESMF_COMM=openmpi
export ESMF_INSTALL_PREFIX=${ESMF_DIR}/INSTALL_gfortran10_openmpi4

netcdf-c
export NETCDF_HOME=$(spack location -i netcdf-c%gcc^openmpi)
export NETCDF_LIB=$NETCDF_HOME/lib

netcdf-fortran
export NETCDF_FORTRAN_HOME=$(spack location -i netcdf-fortran%gcc^openmpi)
export NETCDF_FORTRAN_LIB=$NETCDF_FORTRAN_HOME/lib

flex
export FLEX_HOME=$(spack location -i flex%gcc^openmpi)
export FLEX_LIB=$NETCDF_FORTRAN_HOME/lib
export KPP_FLEX_LIB_DIR=${FLEX_LIB} # OPTIONAL: Needed for KPP

To apply these settings into your login environment, type

source ${model}.env # One of GCClassic.env, GCHP.env, HEMCO.env

To test if the modules have been loaded properly, type:

80 Chapter 15. Build required software with Spack

GCHP, Release 14.3.0

$ nf-config --help # netcdf-fortran configuration utility

If you see a screen similar to this, you know that the modules have been installed properly.

Usage: nf-config [OPTION]

Available values for OPTION include:

--help display this help message and exit
--all display all options
--cc C compiler
--fc Fortran compiler
--cflags pre-processor and compiler flags
--fflags flags needed to compile a Fortran program
--has-dap whether OPeNDAP is enabled in this build
--has-nc2 whether NetCDF-2 API is enabled
--has-nc4 whether NetCDF-4/HDF-5 is enabled in this build
--has-f90 whether Fortran 90 API is enabled in this build
--has-f03 whether Fortran 2003 API is enabled in this build
--flibs libraries needed to link a Fortran program
--prefix Install prefix
--includedir Include directory
--version Library version

15.7 Clean up

At this point, you can remove the ${model} directory as it is not needed. (Unless you would like to keep it to build the
executable for your research with GEOS-Chem Classic, GCHP, or HEMCO.)

The spack directory needs to remain. As mentioned above, this directory cannot be moved.

You can clean up any Spack temporary build stage information with:

$ spack clean -m
==> Removing cached information on repositories

That’s it!

15.7. Clean up 81

GCHP, Release 14.3.0

82 Chapter 15. Build required software with Spack

CHAPTER

SIXTEEN

SET UP AWS PARALLELCLUSTER

Important: AWS ParallelCluster and FSx for Lustre costs hundreds or thousands of dollars per month to use. See
FSx for Lustre Pricing and EC2 Pricing for details.

AWS ParallelCluster is a service that lets you create your own HPC cluster. Using GCHP on AWS ParallelCluster is
similar to using GCHP on any other HPC. We offer up-to-date Amazon Machine Images (AMIs) with GCHP’s depen-
dencies built and GCHP compiled through AMI list. These images contain pre-built GCHP source code and the tools
for creating a GCHP run directory. This page has instructions on using the AMIs to create your own ParallelCluster.
You can also choose to set up AWS ParallelCluster for running GCHP simulations yourself, and the other GCHP docu-
mentation like Build GCHP’s dependencies, Download the model, Compile, Download Input Data, and Run the model
is appropriate for using GCHP on AWS ParallelCluster.

The workflow for getting started with GCHP simulations using AWS ParallelCluster based on our public AMIs is

1. Create an FSx for Lustre file system for input data (described on this page)

2. Configure AWS CLI (described on this page)

3. Configure AWS ParallelCluster (described on this page)

4. Create AWS ParallelCluster with GCHP public AMIs (described on this page)

5. Follow the normal GCHP User Guide

a. Create a Run Directory

b. Download Input Data

6. Running GCHP on ParallelCluster (described on this page)

These instructions were written using AWS ParallelCluster 3.7.0.

16.1 1. Create an FSx for Lustre file system

Start by creating an FSx for Lustre file system. This is persistent storage that will be mounted to your AWS Parallel-
Cluster cluster. This file system will be used for storing GEOS-Chem input data and for housing your GEOS-Chem
run directories.

Refer to the official FSx for Lustre Instructions for instructions on creating the file system. Only Step 1, Create your
Amazon FSx for Lustre file system, is necessary. Step 2, Install the Lustre client, and subsequent steps have instructions
for mounting your file system to EC2 instances, but AWS ParallelCluster automates this for us.

In subsequent steps you will need the following information about your FSx for Lustre file system:

• its ID (fs-XXXXXXXXXXXXXXXXX)

83

https://aws.amazon.com/fsx/lustre/pricing/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/yidant/GCHP-cloud/blob/main/aws/ami.md
https://docs.aws.amazon.com/fsx/latest/LustreGuide/getting-started-step1.html

GCHP, Release 14.3.0

• its subnet (subnet-YYYYYYYYYYYYYYYYY)

• its security group that has the inbound network rules (sg-ZZZZZZZZZZZZZZZZZ).

Once you have created the file system, proceed with 2. AWS CLI Installation and First-Time Setup.

16.2 2. AWS CLI Installation and First-Time Setup

Next you need to make sure you have the AWS CLI installed and configured. The AWS CLI is a terminal command,
aws, for working with AWS services. If you have already installed and configured the AWS CLI previously, continue
to 3. Create your AWS ParallelCluster.

Install the aws command: Official AWS CLI Install Instructions. Once you have installed the aws command, you need
to configure it with the credentials for your AWS account:

$ aws configure

For instructions on aws configure, refer to the Official AWS Instructions or this YouTube tutorial.

16.3 3. Create your AWS ParallelCluster

Note: You should also refer to the offical AWS documentation on Configuring AWS ParallelCluster. Those instructions
will have the latest information on using AWS ParallelCluster. The instructions on this page are meant to supplement
the official instructions, and point out the important parts of the configuration for use with GCHP.

Next, install AWS ParallelCluster with pip. This requires Python 3.

$ pip install aws-parallelcluster

Now you should have the pcluster command. You will use this command to performs actions like: creating a cluster,
shutting your cluster down (temporarily), destroying a cluster, etc.

Create a cluster config file by running the pcluster configure command:

$ pcluster configure --config cluster-config.yaml

For instructions on pcluster configure, refer to the official instructions Configuring AWS ParallelCluster.

The following settings are recommended:

• Scheduler: slurm

• Operating System: alinux2

• Head node instance type: c5n.large

• Number of queues: 1

• Compute instance type: c5n.18xlarge

• Maximum instance count: Your choice. This is the maximum number execution nodes that can run concurrently.
Execution nodes automatically spinup and shutdown according when there are jobs in your queue.

Now you should have a file name cluster-config.yaml. This is the configuration file with setting for a cluster.

84 Chapter 16. Set up AWS ParallelCluster

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.youtube.com/watch?v=Rp-A84oh4G8
https://docs.aws.amazon.com/parallelcluster/latest/ug/install-v3-configuring.html
https://docs.aws.amazon.com/parallelcluster/latest/ug/parallelcluster-version-3.html
https://docs.aws.amazon.com/parallelcluster/latest/ug/install-v3-configuring.html

GCHP, Release 14.3.0

Before starting your cluster with the pcluster create-cluster command, you can modify cluster-config.
yaml to create cluster based on our AMIs. We provide the available AMI ID through AMI list.

You also need to modify cluster-config.yaml so that your FSx for Lustre file system is mounted to your cluster.
Use the following cluster-config.yaml as a template for these changes.

Region: us-east-1 # [replace with] the region with your FSx for Lustre file system
Image:
Os: alinux2
CustomAmi: ami-AAAAAAAAAAAAAAAAA # [replace with] the AMI ID you want to use

HeadNode:
InstanceType: c5n.large # smallest c5n node to minimize costs when head-node is up
Networking:
SubnetId: subnet-YYYYYYYYYYYYYYYYY # [replace with] the subnet of your FSx for␣

→˓Lustre file system
AdditionalSecurityGroups:
- sg-ZZZZZZZZZZZZZZZZZ # [replace with] the security group with inbound rules for␣

→˓your FSx for Lustre file system
LocalStorage:
RootVolume:
VolumeType: io2

Ssh:
KeyName: AAAAAAAAAA # [replace with] the name of your ssh key name for AWS CLI

SharedStorage:
- MountDir: /fsx # [replace with] where you want to mount your FSx for Lustre file␣

→˓system
Name: FSxExtData
StorageType: FsxLustre
FsxLustreSettings:
FileSystemId: fs-XXXXXXXXXXXXXXXXX # [replace with] the ID of your FSx for Lustre␣

→˓file system
Scheduling:
Scheduler: slurm
SlurmQueues:
- Name: main
ComputeResources:
- Name: c5n18xlarge
InstanceType: c5n.18xlarge
MinCount: 0
MaxCount: 10 # max number of concurrent exec-nodes
DisableSimultaneousMultithreading: true # disable hyperthreading (recommended)
Efa:
Enabled: true

Networking:
SubnetIds:
- subnet-YYYYYYYYYYYYYYYYY # [replace with] the subnet of your FSx for Lustre␣

→˓file system (same as above)
AdditionalSecurityGroups:
- sg-ZZZZZZZZZZZZZZZZZ # [replace with] the security group with inbound rules␣

→˓for your FSx for Lustre file system
PlacementGroup:
Enabled: true

ComputeSettings:
LocalStorage:

(continues on next page)

16.3. 3. Create your AWS ParallelCluster 85

https://github.com/yidant/GCHP-cloud/blob/main/aws/ami.md

GCHP, Release 14.3.0

(continued from previous page)

RootVolume:
VolumeType: io2

When you are ready, run the pcluster create-cluster command.

$ pcluster create-cluster --cluster-name pcluster --cluster-configuration cluster-config.
→˓yaml

It may take several minutes up to an hour for your cluster’s status to change to CREATE_COMPLETE. You can check the
status of you cluster with the following command.

$ pcluster describe-cluster --cluster-name pcluster

Once your cluster’s status is CREATE_COMPLETE, run the pcluster ssh command to ssh into it.

$ pcluster ssh --cluster-name pcluster -i ~/path/to/keyfile.pem

At this point, your cluster is set up and you can use it like any other HPC. Now you can create a run directory by running
the createRunDir.sh command. Your next steps will be following the normal instructions found in the User Guide.

16.4 4. Running GCHP on ParallelCluster

AWS ParallelCluster supports Slurm and AWS Batch job schedulers. Your cluster is set to use Slurm scheduler accord-
ing to the configuration file. It might require the root permission to run Slurm commands or restart Slurm. Before you
submit your job, you can start a shell as superuser by running sudo -s.

You can follow Run the model to run GCHP with Slurm scheduler.

86 Chapter 16. Set up AWS ParallelCluster

CHAPTER

SEVENTEEN

CACHE INPUT DATA ON FAST DRIVES

This page describes how to set up a cache of GEOS-Chem input data. This is useful if you want to temporarily transfer
a simulation’s input data to a performant hard drive. This can improve the speed of your GCHP simulation by reducing
the time spent reading input data. Caching input data is also useful if the file system that stores your GEOS-Chem input
data repository has issues that are causing simulations to crash (i.e., you can transfer the data for your simulation to
more stable hard drives).

17.1 Install the bashdatacatalog

Install the bashdatacatalog with the following command. Follow the prompts and restart your console.

gcuser:~$ bash <(curl -s https://raw.githubusercontent.com/LiamBindle/bashdatacatalog/
→˓main/install.sh)

Note: You can rerun this command to upgrade to the latest version.

17.2 Set Up the ExtDataCache Directory

Next, we are going to set up the ExtDataCache directory. You should put this directory in the appropriate path so that
desired hard drives are used. For example, if you have performance hard drives at /scratch/, create a directory like
/scratch/ExtDataCache/. We are going to use ExtDataCache/ to temporarily store the input data for simulations.

In the future, the idea is that you will copy the prerequisite input data to ExtDataCache/ before you run a simulation.
Since ExtDataCache/ is temporary data, you can delete it periodically to “purge” it. Alternatively, you can use
bashdatacatalog commands to selectively remove files. If you are running long simulations, you can keep a few years
of data in ExtDataCache/, sort of like a moving window tracking the progress of your simulation.

Create a subdirectory in ExtDataCache/ to store catalog files. You need a set of four catalog files for each simulation:

• MeteorologicalInputs.csv – Specifies the simulation’s meteorological input data

• ChemistryInputs.csv – Specifies the simulation’s chemistry input data

• EmissionsInputs.csv – Specifies the simulation’s emissions input data

• InitialConditions.csv – Specifies the default restart files for the simulation

A good directory structure for catalog files is ExtDataCache/CatalogFiles/SIMULATION_ID where
SIMULATION_ID is a placeholder for a unique identifier for your simulation. These instructions will put a
demo set of catalog files in ExtDataCache/CatalogFiles/DemoSimulation:

87

GCHP, Release 14.3.0

gcuser:~$ cd /scratch
gcuser:/scratch$ mkdir ExtDataCache # for storing input data for simulations
gcuser:/scratch$ mkdir ExtDataCache/CatalogFiles # for storing catalog files
gcuser:/scratch$ mkdir ExtDataCache/CatalogFiles/DemoSimulation # for storing catalog␣
→˓files for a specific simulation

Next, download the catalog files for the appropriate version of GEOS-Chem. You can find the GEOS-Chem catalog
files here.

gcuser:/scratch$ cd ExtDataCache/CatalogFiles/DemoSimulation
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.wustl.
→˓edu/ExtData/DataCatalogs/MeteorologicalInputs.csv
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.wustl.
→˓edu/ExtData/DataCatalogs/13.3/ChemistryInputs.csv
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.wustl.
→˓edu/ExtData/DataCatalogs/13.3/EmissionsInputs.csv
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ wget http://geoschemdata.wustl.
→˓edu/ExtData/DataCatalogs/13.3/InitialConditions.csv

Edit the catalog files according to your simulation configuration. You can enable/disable data collections by editing
column 3 (1 to enable a collection, 0 to disable a collection). If you are not sure if your simulation needs a collection,
it is better to err on the side of inclusion. The meteorological data collections are the largest by volume. Only one
meteorological data collection in MeteorologicalInputs.csv needs to be enabled.

17.3 Update the Collection URLs

The default collection URLs in the catalog files point to http://geoschemdata.wustl.edu/ExtData. To copy data from
your primary ExtData repository, edit column 2 of the catalog files. For example, if your primary ExtData repository is
at /storage/ExtData you would replace http://geoschemdata.wustl.edu/ExtDatawith file:///storage/
ExtData in column 2 of the catalog files. Below is a sed command that will do the replacement.

gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ export FIND_STR="http://
→˓geoschemdata.wustl.edu/ExtData"
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ export REPLACE_STR="file:///
→˓storage/ExtData" # replace '/storage/ExtData' with the path to your ExtData
gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ sed -i "s#${FIND_STR}#$
→˓{REPLACE_STR}#g" *.csv # do url find/replace

17.4 Copy Data to ExtDataCache

Navigate to ExtDataCache/. One you are there, run bashdatacatalog-fetch to fetch metadata from ExtData. The
arguments to bashdatacatalog-fetch are catalog files. This metadata includes the file list for each data collection,
and the details to classify each file as a temporal or static file.

gcuser:/scratch/ExtDataCache/CatalogFiles/DemoSimulation$ cd ../..
gcuser:/scratch/ExtDataCache$ bashdatacatalog-fetch CatalogFiles/DemoSimulation/*.csv

Now you can run bashdatacatalog-list commands to generate file lists. The output of bashdatacatalog-list
is controlled using flags. For example, add the -s to list “static” files (input files that are always required regardless of

88 Chapter 17. Cache Input Data on Fast Drives

http://geoschemdata.wustl.edu/ExtData/DataCatalogs
http://geoschemdata.wustl.edu/ExtData

GCHP, Release 14.3.0

the simulation period). You can list “temporal” files with the -t flag. You can filter temporal files according to a date
range with the -r START,END argument. You can filter out files that exist using the -m flag (lists files that are missing).
You can specify different file list formats using the -f FORMAT argument. Below is a command that lists all the files
in ExtDataCache that are missing for a simulation starting on 2017-01-01 and ending on 2017-12-31.

gcuser:/scratch/ExtDataCache$ bashdatacatalog-list -stm -r 2016-12-31,2018-01-01␣
→˓CatalogFiles/DemoSimulation/*.csv

Note: You need to subtract/add one day to the period of your simulation. The example above uses -r 2016-12-31,
2018-01-01 because the simulation period is 2017-01-01 to 2017-12-31.

To copy the missing files to ExtDataCache, you can use the argument -f xargs-curl to specify the output list should
be formatted as input to xargs curl. You can use a command similar to the one below to copy all the missing files
for your simulation to ExtDataCache.

gcuser:/scratch/ExtDataCache$ bashdatacatalog-list -stm -r 2016-12-31,2018-01-01 -f␣
→˓xargs-curl CatalogFiles/DemoSimulation/*.csv | xargs -P 4 curl

Note: The -P 4 argument to xargs allows for 4 parallel copies at a time.

17.5 Update Run Directory to use ExtDataCache

To update a run directory to use ExtDataCache, you can run the following commands. Make sure to set FIND_PATH to
ExtData and REPLACE_PATH to ExtDataCache.

gcuser:/scratch/ExtDataCache$ cd /MyRunDirectory # cd to your run directory
gcuser:/MyRunDirectory$ export FIND_PATH=/storage/ExtData # replace path to your␣
→˓primary ExtData
gcuser:/MyRunDirectory$ export REPLACE_PATH=/scratch/ExtDataCache # replace with the␣
→˓path to your ExtDataCache
gcuser:/MyRunDirectory$ function swap_extdata_link { ln -sfn $(readlink $1 | sed "s#$
→˓{FIND_PATH}/*#${REPLACE_PATH}/#") $1; }
gcuser:/MyRunDirectory$ swap_extdata_link ChemDir
gcuser:/MyRunDirectory$ swap_extdata_link HcoDir
gcuser:/MyRunDirectory$ swap_extdata_link MetDir
gcuser:/MyRunDirectory$ sed -i "s#${FIND_PATH}#${REPLACE_PATH}#g" HEMCO_Config.rc␣
→˓geoschem_config.yml

Now your GCHP simulation will use input data from ExtDataCache.

17.5. Update Run Directory to use ExtDataCache 89

GCHP, Release 14.3.0

17.6 See Also

• bashdatacatalog - Instructions for GEOS-Chem Users

• bashdatacatalog - List of useful commands

• GEOS-Chem Input Data Catalogs

90 Chapter 17. Cache Input Data on Fast Drives

https://github.com/LiamBindle/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/LiamBindle/bashdatacatalog/wiki/3.-Useful-Commands
http://geoschemdata.wustl.edu/ExtData/DataCatalogs/

CHAPTER

EIGHTEEN

USE GCHP CONTAINERS

Containers are an effective method of packaging and delivering GCHP’s source code and requisite libraries. We offer
up-to-date Docker images for GCHP through Docker Hub. These images contain pre-built GCHP source code and the
tools for creating a GCHP run directory. The instructions below show how to create a run directory and run GCHP
using Singularity , which can be installed using instructions at the previous link or through Spack. Singularity is a
container software that is preferred over Docker for many HPC applications due to security issues. Singularity can
automatically convert and use Docker images. You can choose to use Docker or Singularity depending on the support
of the cluster.

The workflow for running GCHP using containers is

1. Pull an image (described on this page)

2. Create a run directory (use pre-built tools or follow Create a Run Directory)

3. Download input data (described on this page and Download Input Data)

4. Running GCHP (use pre-built tools or follow Run the model)

18.1 Software requirements

There are only two software requirements for running GCHP using a Singularity container:

• Singularity itself

• An MPI implementation that matches the type and major/minor version of the MPI implementation inside of the
container

18.2 Performance

Because we do not include optimized infiniband libraries within the provided Docker images, container-based GCHP
is currently not as fast as other setups.

Container-based benchmarks deployed on Harvard’s Cannon cluster using up to 360 cores at c90 (~1x1.25) resolu-
tion averaged 15% slower than equivalent non-container runs. Performance may worsen at a higher core count and
resolution. If this performance hit is not a concern, these containers are the quickest way to setup and run GCHP.

91

https://hub.docker.com/r/geoschem/gchp
https://sylabs.io/guides/3.0/user-guide/installation.html

GCHP, Release 14.3.0

18.3 Pulling an image and creating run directory using Singularity

Available GCHP images are listed on Docker Hub. The following command pulls the image of GCHP 14.2.0 and
converts it to a Singularity image named gchp.sif in your current directory.

$ singularity pull gchp.sif docker://geoschem/gchp:14.2.0

If you do not already have GCHP data directories, create a directory where you will later store data files. We will call
this directory DATA_DIR and your run directory destination WORK_DIR in these instructions. Make sure to replace these
names with your actual directory paths when executing commands from these instructions.

The following command executes GCHP’s run directory creation script. Within the container, your DATA_DIR and
WORK_DIR directories are visible as /ExtData and /workdir. Use /ExtData and /workdir when asked to specify
your ExtData location and run directory target folder, respectively, in the run directory creation prompts.

$ singularity exec -B DATA_DIR:/ExtData -B WORK_DIR:/workdir gchp.sif /bin/bash -c ". ~/.
→˓bashrc && /opt/geos-chem/bin/createRunDir.sh"

Once the run directory is created, it will be available at WORK_DIR on your host machine. cd to WORK_DIR.

18.4 Setting up and running GCHP using Singularity

To avoid having to specify the locations of your data and run directories (RUN_DIR) each time you execute a command
in the singularity container, we will add these to an environment file called ~/.container_run.rc and point the
gchp.env symlink to this environment file. We will also load MPI in this environment file (edit the first line below as
appropriate to your system).

$ echo "module load openmpi/4.0.3" > ~/.container_run.rc
$ echo "export SINGULARITY_BINDPATH=\"DATA_DIR:/ExtData,RUN_DIR:/rundir\"" >> ~/.
→˓container_run.rc
$./setEnvironmentLink.sh ~/.container_run.rc
$ source gchp.env

We will now move the pre-built gchp executable and example run scripts to the run directory.

$ rm runScriptSamples # remove broken link
$ singularity exec ../gchp.sif cp /opt/geos-chem/bin/gchp /rundir
$ singularity exec ../gchp.sif cp -rf /gc-src/run/runScriptSamples/ /rundir

Before running GCHP in the container, we need to create an execution script to tell the container to load its internal
environment before running GCHP. We’ll call this script internal_exec.

$ echo -e "if [-e \"/init.rc\"] ; then\n\t. /init.rc\nfi" > ./internal_exec # no need␣
→˓for versions after 13.4.1
$ echo "cd /rundir" >> ./internal_exec
$ echo "./gchp" >> ./internal_exec
$ chmod +x ./internal_exec

The last change you need to make to run GCHP in a container is to edit your run script (whether from
runScriptSamples/ or otherwise). Replace the typical execution line in the script (where mpirun or srun is called)
with the following:

92 Chapter 18. Use GCHP Containers

https://hub.docker.com/r/geoschem/gchp/tags?page=1&ordering=last_updated

GCHP, Release 14.3.0

$ time mpirun singularity exec ../gchp.sif /rundir/internal_exec >> ${log}

You can now setup your run configuration as normal using setCommonRunSettings.sh and tweak Slurm parameters
in your run script.

If you already have GCHP data directories, congratulations! You’ve completed all the steps you need to run GCHP in
a container. If you still need to download data directories, read on.

18.5 Downloading data directories using GEOS-Chem Classic’s dry-
run option

GCHP does not currently support automated download of requisite data directories, unlike GEOS-Chem Classic. Luck-
ily we can use a GC Classic container to execute a dry-run that matches the parameters of our GCHP run to download
data files.

$ #get GC Classic image from https://hub.docker.com/r/geoschem/gcclassic
$ singularity pull gcc.sif docker://geoschem/gcclassic:13.0.0-alpha.13-7-ge472b62
$ #create a GC Classic run directory (GC_CLASSIC_RUNDIR) in WORK_DIR that matches
$ #your GCHP rundir (72-level, standard vs. benchmark vs. transport tracers, etc.)
$ singularity exec -B WORK_DIR:/workdir gcc.sif /opt/geos-chem/bin/createRunDir.sh
$ cd GC_CLASSIC_RUNDIR
$ #get pre-compiled GC Classic executable
$ singularity exec -B .:/classic_rundir ../gcc.sif cp /opt/geos-chem/bin/gcclassic /
→˓classic_rundir

Make sure to tweak dates of run in geoschem_config.yml as needed, following info here.

$ #create an internal execute script for your container
$ echo ". /init.rc" > ./internal_exec
$ echo "cd /classic_rundir" >> ./internal_exec
$ echo "./gcclassic --dryrun" >> ./internal_exec
$ chmod +x ./internal_exec
$ #run the model, outputting requisite file info to log.dryrun
$ singularity exec -B .:/classic_rundir ../gcc.sif /classic_rundir/internal_exec > log.
→˓dryrun

Follow instructions here for downloading your relevant data. Note that you will still need a restart file for your GCHP
run which will not be automatically retrieved by this download script.

18.5. Downloading data directories using GEOS-Chem Classic’s dry-run option 93

https://geos-chem.readthedocs.io/en/stable/gcclassic-user-guide/dry-run.html
https://geos-chem.readthedocs.io/en/stable/gcclassic-user-guide/dry-run-run.html
https://geos-chem.readthedocs.io/en/stable/gcclassic-user-guide/dry-run-download.html

GCHP, Release 14.3.0

94 Chapter 18. Use GCHP Containers

CHAPTER

NINETEEN

STRETCHED-GRID SIMULATION

Note: Stretched-grid simulations are described in [Bindle et al., 2021]. This paper also discusses related tpics of
consideration and offers guidance for choosing appropriate stretching parameters.

19.1 Overview

A stretched-grid is a cubed-sphere grid that is “stretched” to enhance its resolution in a region. To set up a stretched-grid
simulation you need to do the following:

1. Choose stretching parameters, including stretch factor and target latitude and longitude.

2. Create a stretched grid restart file for your simulation using your chosen stretch parameters.

3. Configure the GCHP run directory to specify stretched grid parameters in setCommonRunSettings.sh and use
your stretched grid restart file.

19.1.1 Choose stretching parameters

The target face is the face of a stretched-grid that shrinks so that the grid resolution is finer. The target face is centered
on a target point, and the degree of stretching is controlled by a parameter called the stretch-factor. Relative to a
normal cubed-sphere, the resolution of the target face is refined by approximately the stretch-factor. For example, a
C60 stretched-grid with a stretch-factor of 3.0 has approximately C180 (~50 km) resolution in the target face. The
enhancement-factor is approximate because (1) the stretching gradually changes with distance from the target point,
and (2) gnominic cubed-sphere grids are quasi-uniform with grid-boxes at face edges being ~1.5x shorter than at face
centers.

You can choose a stretch-factor and target point using the interactive figure below. You can reposition the target face by
changing the target longitude and target latitude. The domain of refinement can be increased or decreased by changing
the stretch-factor. Choose parameters so that the target face roughly covers the refion that you want to refine.

Note: The interactive figure above can be a bit fiddly. Refresh the page if the view gets messed up. If the figure above
is not showing up properly, please open an issue.

Next you need to choose a cubed-sphere size. The cubed-sphere size must be an even integer (e.g., C90, C92, C94,
etc.). Remember that the resolution of the target face is enhanced by approximately the stretch-factor.

95

https://gchp.readthedocs.io/en/stable/reference/SUPPORT.html

GCHP, Release 14.3.0

19.1.2 Create a restart file

A simulation restart file must have the same grid as the simulation. For example, a C180 simulation requires a restart
file with a C180 grid. Likewise, a stretched-grid simulation needs a restart file with the same stretched-grid (i.e., an
identical cubed-sphere size, stretch-factor, target longitude, and target latitude).

You can regrid an existing restart file to a stretched-grid using the GEOS-Chem python package GCPy. See the Re-
gridding section of the GCPy documentation for instructions. Once you have created a restart file for your simulation,
you can move on to updating your simulation’s configuration files.

Note: A stretched grid restart file is available for download if you would like to quickly get set up to run a stretched
grid simulation. See the GEOSCHEM_RESTARTS/GC_14.0.0 directory in the GEOS-Chem data repository.

Configure run directory

Modify the section of setCommonRunSettings.sh that controls the simulation grid. Turn STRETCH_GRID to ON and
update CS_RES, STRETCH_FACTOR, TARGET_LAT, and TARGET_LON for your specific grid.

#--
GRID RESOLUTION
#--
Integer representing number of grid cells per cubed-sphere face side
CS_RES=24

#--
STRETCHED GRID
#--
Turn stretched grid ON/OFF. Follow these rules if ON:
(1) Minimum STRETCH_FACTOR value is 1.0001
(2) TARGET_LAT and TARGET_LON are floats containing decimal
(3) TARGET_LON in range [0,360)
STRETCH_GRID=OFF
STRETCH_FACTOR=3.0
TARGET_LAT=40.0
TARGET_LON=260.0

Execute ./setCommonRunSettings.sh to update your run directory’s configuration files.

$./setCommonRunSettings.sh

You will also need to configure the run directory to use the stretched grid restart file.

1. Update cap_restart to match the date of your restart file. This will also be the start date of the run.

2. Copy or symbolically link to your restart file in the Restarts subdirectory with the proper filename format. The
format includes global resolution but not stretched grid resolution. To avoid confusion about what grid the file
contains you can symbolically link to a file with stretched grid parameters in its filename.

3. Run setRestartLink.sh to set symbolic link gchp_restart.nc4 to point to your restart file based on start
date in cap_restart and global grid resolution in setCommonRunSettings.sh. This is also included as pre-
run step in all example run scripts provided in runScriptSamples.

96 Chapter 19. Stretched-Grid Simulation

https://gcpy.readthedocs.io/en/stable/Regridding.html
https://gcpy.readthedocs.io/en/stable/Regridding.html
http://geoschemdata.wustl.edu/ExtData/GEOSCHEM_RESTARTS/GC_14.0.0/

GCHP, Release 14.3.0

19.2 Tutorial: Eastern United States

This tutorial walks you through setting up and running a stretched-grid simulation for ozone in the eastern United
States. The grid parameters for this tutorial are:

Parameter Value
Stretch-factor 3.6
Cubed-sphere size C60
Target latitude 37° N
Target longitude 275° E

These parameters are chosen so that the target face covers the eastern United States. Some back-of-the-envelope reso-
lution calculations are:

average resolution of target face = Rtf ≈
10000 km

N× S
= 46 km

coarsest resolution in target face (at the center) ≈ Rtf × 1.2 = 56 km

finest resolution in target face (at the edges) ≈ Rtf ÷ 1.2 = 39 km

coarsest resolution globally (at target antipode) ≈ Rtf × S2 × 1.2 = 720 km

where N is the cubed-sphere size and S is the stretch-factor. The actual values of these, calculated from the grid-box
areas, are 46 km, 51 km, 42 km, and 664 km respectively.

Note: This tutorial uses a relatively large stretch-factor. A smaller stretch-factor, such as 2.0 rather than 3.6, would
have a broader refinement and smaller range resolutions.

19.2.1 Requirements

Before continuing with the tutorial check that you have all pre-requisites:

• You are able to run global GCHP simulations using MERRA2 data for July 2019

• You have the latest version of GEOS-Chem python package GCPy

• You have python package cartopy with version >= 0.19

19.2.2 Create run directory

Create a standard full chemistry run directory that uses MERRA2 meteorology. The rest of the tutorial assume that
your current working directory is your run directory.

19.2. Tutorial: Eastern United States 97

GCHP, Release 14.3.0

19.2.3 Create restart file

You will need to create a restart file with a horizontal resolution that matches your chosen stretched-grid resolution.
Unlike other input data, GCHP ingests the restart file with no online regridding. Using a restart file with a hori-
zontal grid that does not match the run grid will result in a run-time error. To create a restart file for a stretched-
grid simulation you can regrid a restart file with a uniform grid using GCPy. Follow instructions on how to create a
GCHP stretched grid restart file in the GCPy documentation. For this tutorial regrid the c48 fullchem restart file for
July 1, 2019 that comes with a GCHP fullchem run directory (GEOSChem.Restart.20190701_0000z.c48.nc4).
Grid resolution is 60, stretch factor is 3.6, target longitude is 275, and target latitude is 37. Name the output file
initial_GEOSChem_rst.EasternUS_SG_fullchem.c60.s3.6_37N_275E.nc.

19.2.4 Configure run directory

Make the following modifications to setCommonRunSettings.sh:

• Change the simulation’s duration to 7 days

• Turn on auto-update of diagnostics

• Set diagnostic frequency to 24 hours (daily)

• Set diagnostic duration to 24 hours (daily)

• Update the compute resources as you like. This simulation’s computational demands are about 50% more than
a C48 or 2°x2.5° simulation.

• Change global grid resolution to 60

• Change STRETCH_GRID to ON

• Change STRETCH_FACTOR to 3.6

• Change TARGET_LAT to 37.0

• Change TARGET_LON to 275.0

Note: In our tests this simulation took approximately 7 hours to run using 30 cores on 1 node. For comparison, it took
2 hours to run using 180 cores across 6 notes. You may choose your compute resources based on how long you are
willing to wait for your run to end.

Next, execute setCommonRunSettings.sh to apply the updates to the various configuration files:

$./setCommonRunSettings.sh

Before running GCHP you also need to configure the model to use your stretched-grid restart file. Move or copy your
restart file to the Restarts subdirectory. Then change the symbolic link GEOSChem.Restart.20190701_0000z.
c48.nc4 to point to your stretched-grid restart file while keeping the name of the link the same.

$ ln -nsf initial_GEOSChem_rst.EasternUS_SG_fullchem.c60.s3.6_37N_275E.nc GEOSChem.
→˓Restart.20190701_0000z.c48.nc4

You could also rename your restart file to this format but this would remove valuable information about the content of
the file from the filename. Symbolically linking is a better way to preserve the information to avoid errors. You can
check that you did this correctly by running setRestartLink.sh in the run directory.

98 Chapter 19. Stretched-Grid Simulation

https://gcpy.readthedocs.io/en/stable/Regridding.html

GCHP, Release 14.3.0

19.2.5 Run GCHP

To run GCHP you can use the example run script for running interactively located at runScriptSamples/gchp.
local.run as long as you have enough resources available locally, e.g. 30 cores on 1 node. Copy it to the main level
of your run directory and then execute it. If you want to use more resources you can submit as a batch job to your
scheduler.

$./gchp.local.run

Log output of the run will be sent to log file gchp.20190701_0000z.log. Check that your run was successful by
inspecting the log and looking for output in the OutputDir subdirectory.

19.2.6 Plot the output

Plotting stretched grid is simple using Python. Below is an example plotting ozone at model level 22. All libraries are
available if using a python environment compatible with GCPy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import xarray as xr

Load 24-hr average concentrations for 2019-07-01
ds = xr.open_dataset('GCHP.DefautlCollection.20190701_0000z.nc4')

Get Ozone at level 22
ozone_data = ds['SpeciesConcVV_O3'].isel(time=0, lev=22).squeeze()

Setup axes
ax = plt.axes(projection=ccrs.EqualEarth())
ax.set_global()
ax.coastlines()

Plot data on each face
for face_idx in range(6):

x = ds.corner_lons.isel(nf=face_idx)
y = ds.corner_lats.isel(nf=face_idx)
v = ozone_data.isel(nf=face_idx)
pcm = plt.pcolormesh(

x, y, v,
transform=ccrs.PlateCarree(),
vmin=20e-9, vmax=100e-9

)

plt.colorbar(pcm, orientation='horizontal')
plt.show()

19.2. Tutorial: Eastern United States 99

GCHP, Release 14.3.0

100 Chapter 19. Stretched-Grid Simulation

CHAPTER

TWENTY

OUTPUT ALONG A TRACK

HISTORY collections can define a track_file that specifies a 1D timeseries of coordinates that the model is sampled
at. The collection output has the same coordinates as the track file. This feature can be used to sample GCHP along a
satellite track or a flight path. A track file is a NetCDF file with the following format

$ ncdump -h example_track.nc
netcdf example_track.nc {
dimensions:

time = 1234 ;
variables:

float time(time) ;
time:_FillValue = NaNf ;
time:long_name = "time" ;
time:units = "hours since 2020-06-01 00:00:00" ;

float longitude(time) ;
longitude:_FillValue = NaNf ;
longitude:long_name = "longitude" ;
longitude:units = "degrees_east" ;

float latitude(time) ;
latitude:_FillValue = NaNf ;
latitude:long_name = "latitude" ;
latitude:units = "degrees_north" ;

}

Important: Longitudes must be between 0 and 360.

Important: When using recycle_track, the time offsets must be between 0 and 24 hours.

To configure 1D output, you can add the following attributes to any collection in HISTORY.rc.

track_file
Path to a track file. The associated collection will be sampled from the model along this track. A
track file is a 1-dimensional timeseries of latitudes and longitudes that the model is be sampled at
(nearest neighbor).

recycle_track
Either .false. (default) or .true.. When enabled, HISTORY replaces the date of the time co-
ordinate in the track file with the simulation’s current day. This lets you use the same track file for
every day of your simulation.

101

GCHP, Release 14.3.0

Note: 1D output only works for instantaneous sampling.

The frequency attribute is ignored when track_file is used.

20.1 Creating a satellite track file

GCPy includes a command line tool, gcpy.raveller_1D, for generating track files for polar orbiting satellites. These
track files will sample model grid-boxes at the times that correspond to the satellite’s overpass time. You can also
use this tool to “unravel” the resulting 1D output back to a cubed-sphere grid. Below is an example of using gcpy.
raveller_1D to create a track file for a C180 simulation for TROPOMI, which is in ascending sun-synchronous orbit
with 14 orbits per day and an overpass time of 13:30. Please see the GCPy documentation for this program’s exact
usage, and for installation instructions.

$ python -m gcpy.raveller_1D create_track --cs_res 24 --overpass_time 13:30 --direction␣
→˓ascending --orbits_per_day 14 -o tropomi_overpass_c24.nc

The resulting track file, tropomi_overpass_c24.nc, looks like so

$ ncdump -h tropomi_overpass_c24.nc
netcdf tropomi_overpass_c24 {
dimensions:

time = 3456 ;
variables:

float time(time) ;
time:_FillValue = NaNf ;
time:long_name = "time" ;
time:units = "hours since 1900-01-01 00:00:00" ;

float longitude(time) ;
longitude:_FillValue = NaNf ;
longitude:long_name = "longitude" ;
longitude:units = "degrees_east" ;

float latitude(time) ;
latitude:_FillValue = NaNf ;
latitude:long_name = "latitude" ;
latitude:units = "degrees_north" ;

float nf(time) ;
nf:_FillValue = NaNf ;

float Ydim(time) ;
Ydim:_FillValue = NaNf ;

float Xdim(time) ;
Xdim:_FillValue = NaNf ;

}

Note: Track files do not require the nf, Ydim, Xdim variables. The are used for post-process “ravelling” with gcpy.
raveller_1D (changing the 1D output’s coordinates to a cubed-sphere grid).

Note: With recycle_track, HISTORY replaces the reference date (e.g., 1900-01-01) with the simulation’s current
date, so you can use any reference date.

102 Chapter 20. Output Along a Track

GCHP, Release 14.3.0

20.2 Updating HISTORY

Open HISTORY.rc and add the track_file and recycle_track attributes to your desired colleciton. For example,
the following is a custom collection that samples NO2 along the tropomi_overpass_c24.nc.

TROPOMI_NO2.template: '%y4%m2%d2_%h2%n2z.nc4',
TROPOMI_NO2.format: 'CFIO',
TROPOMI_NO2.duration: 240000
TROPOMI_NO2.track_file: tropomi_overpass_c24.nc
TROPOMI_NO2.recycle_track: .true.
TROPOMI_NO2.mode: 'instantaneous'
TROPOMI_NO2.fields: 'SpeciesConc_NO2 ', 'GCHPchem',

::

20.3 Unravelling 1D overpass timeseries

To covert the 1D timeseries back to a cubed-sphere grid, you can use gcpy.raveller_1D. Below is an example of
changing the 1D output back to model grid. Again, see the GCPy documentation for this program’s exact usage, and
for installation instructions.

$ python -m gcpy.raveller_1D unravel --track tropomi_overpass_c24.nc -i OutputDir/GCHP.
→˓TROPOMI_NO2.20180101_1330z.nc4 -o OutputDir/GCHP.TROPOMI_NO2.20180101_1330z.OVERPASS.
→˓nc4

The resulting dataset, GCHP.TROPOMI_NO2.20180101_1330z.OVERPASS.nc4, are simulated concentration on the
model grid, sampled at the times that correspond to TROPOMI’s overpass.

20.2. Updating HISTORY 103

GCHP, Release 14.3.0

104 Chapter 20. Output Along a Track

CHAPTER

TWENTYONE

MANAGE A DATA ARCHIVE WITH BASHDATACATALOG

If you need to download a large amount of input data for GEOS-Chem or HEMCO (e.g. in support of a large user group at
your institution) you may find bashdatacatalog helpful.

21.1 What is bashdatacatalog?

The bashdatacatalog is a command-line tool (written by Liam Bindle) that facilitates synchronizing local data col-
lections with a remote data source. With the bashdatacatalog, you can run queries on your local data collections to
answer questions like “What files am I missing?” or “What files aren’t bitwise identical to remote data?”. Queries can in-
clude a date range, in which case collections with temporal assets are filtered-out accordingly. The bashdatacatalog
can format the results of queries as: a URL download list, a Globus transfer list, an rsync transfer list, or simply a file
list.

The bashdatacatalog was written to facilitate downloading input data for users of the GEOS-Chem atmospheric
chemistry model. The canonical GEOS-Chem input data repository has >1 M files and >100 TB of data, and the input
data required for a simulation depends on the model version and simulation parameters such as start and end date.

21.2 Usage instructions

For detailed instructions on using bashdatacatalog, please see the bashdatacatalog wiki on Github.

Also see our input-data-catalogs Github repository for comma-separated input lists of GEOS-Chem data, separated by
model version.

105

https://github.com/LiamBindle
http://geos-chem.org
http://geos-chem.org
https://github.com/geoschem/bashdatacatalog/wiki/Instructions-for-GEOS-Chem-Users
https://github.com/geoschem/input-data-catalogs

GCHP, Release 14.3.0

106 Chapter 21. Manage a data archive with bashdatacatalog

CHAPTER

TWENTYTWO

ARCHIVE OUTPUT WITH THE HISTORY DIAGNOSTICS

22.1 Introduction

GEOS-Chem Classic and GCHP allow you to save various diagnostic fields to netCDF files via the History component.
In the following sections you will learn how to schedule diagnostics for output using History.

Note: HEMCO has its own diagnostic archiving capability. Please see the HEMCO diagnostics chapter of The
HEMCO User’s Guide more information.

22.1.1 The HISTORY.rc configuration file

You can request GEOS-Chem diagnostics by editing the HISTORY.rc configuration file. This file lists the groups of
diagnostic outputs (called collections), and the parameters for each collection (frequency of archival, mode of archiving,
fields per collection, etc.). GEOS-Chem will write netCDF files for each collection at the output intervals that you
specify in HISTORY.rc.

The following is a stripped-down HISTORY.rc file example for illustration purposes. The HISTORY.rc file that you
will find in your GEOS-Chem run directory will contain more collections than what is shown below.

#==
EXPID allows you to specify the beginning of the file path corresponding
to each diagnostic collection. For example:
#
EXPID: ./GEOSChem
Will create netCDF files whose names begin "GEOSChem",
in this run directory.
#
EXPID: ./OutputDir/GEOSChem
Will create netCDF files whose names begin with "GEOSChem"
in the OutputDir sub-folder of this run directory.
#
#==
EXPID: ./OutputDir/GEOSChem

#==
%%%%% COLLECTION NAME DECLARATIONS %%%%%
#
To disable a collection, place a "#" character in front of its name.
#==

(continues on next page)

107

https://hemco.readthedocs.io/en/latesthco-ref-guide/diagnostics.html
https://hemco.readthedocs.io
https://hemco.readthedocs.io

GCHP, Release 14.3.0

(continued from previous page)

COLLECTIONS: 'SpeciesConc',
'SpeciesConcSubset',
'ConcAfterChem',

::
#==
%%%%% THE SpeciesConc COLLECTION %%%%%
#
GEOS-Chem species concentrations (default = advected species)
#
Available for all simulations
#==
SpeciesConc.template: '%y4%m2%d2_%h2%n2z.nc4',
SpeciesConc.frequency: 00000000 060000
SpeciesConc.frequency: 00000001 000000
SpeciesConc.format: 'CFIO',
SpeciesConc.mode: 'instantaneous',
SpeciesConc.fields: 'SpeciesConcVV_?ADV?',

'SpeciesConcMND_?ALL?',
::
#==
%%%%% THE SpeciesConcSubset COLLECTION %%%%%
#
Same as the SpeciesConc collection, but will subset data in the horizontal
and vertical dimensions so that the netCDF diagnostic files will cover
a smaller region of the globe. This can save disk space and memory.
#
NOTE: This capability will be available in GEOS-Chem "Classic" 12.5.0
and later versions.
#
Available for all simulations
#==
SpeciesConcSubset.template: '%y4%m2%d2_%h2%n2z.nc4',
SpeciesConcSubset.frequency: 00000000 060000
SpeciesConcSubset.duration: 00000001 000000
SpeciesConcSubset.format: 'CFIO',
SpeciesConcSubset.mode: 'instantaneous',
SpeciesConcSubset.LON_RANGE: -40.0 60.0,
SpeciesConcSubset.LAT_RANGE: -10.0 50.0,
SpeciesConcSubset.levels: 1 2 3 4 5,
SpeciesConcSubset.fields: 'SpeciesConcVV_?ADV?',
::
#==
%%%%% THE ConcAfterChem COLLECTION %%%%%
#
Concentrations of OH, HO2, O1D, O3P immediately after exiting the KPP solver
or OH after the CH4 specialty-simulation chemistry routine.
#
OH: Available for all full-chemistry simulations and CH4 specialty sim
HO2: Available for all full-chemistry simulations
O1D, O3P: Availalbe for full-chemistry simulations using UCX mechanism
#==
ConcAfterChem.template: '%y4%m2%d2_%h2%n2z.nc4',

(continues on next page)

108 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

(continued from previous page)

ConcAfterChem.format: 'CFIO',
ConcAfterChem.frequency: 00000100 000000,
ConcAfterChem.duration: 00000100 000000,
ConcAfterChem.mode: 'time-averaged',
ConcAfterChem.fields: 'OHconcAfterChem',

'HO2concAfterChem',
'O1DconcAfterChem',
'O3PconcAfterChem',

::

In this HISTORY.rc file, we are requesting three collections, or types of netCDF file output. The table below explains
in more detail parameters shown in the HISTORY.rc file above.

EXPID

This parameter controls the filename prefix. In this example,, EXPID is set to ./OutputDir/GEOSChem
by default. This means that all diagnostic files will be written to the ./OutputDir subdirectory of the
GEOS-Chem run directory, and will start with the prefix GEOSChem.

Note: Restart files are placed in the ./Restarts subdirectory of the run directory instead of ./
OutputDir, which only contains diagnostic files.

COLLECTIONS:

The COLLECTIONS: tag specifies all of the diagnostic collections that you wish to activate during a GEOS-
Chem simulation. Each collection represents a group of diagnostic quantities that will be written to disk
in netCDF file format. The collection name will be automatically added to the netCDF file name along
with the date/or time.

Each GEOS-Chem run directory will ship with its own customized HISTORY.rc configuration file. Only
the diagnostic collections pertaining to a particular GEOS-Chem simulation will be included in the corre-
sponding HISTORY.rc file.

Each collection name must be bracketed by single quotes, and be followed by a comma.

To disable an entire diagnostic collection, simply put a # comment character in front of the collection name
in the COLLECTIONS: section.

GEOS-Chem will expect to find a collection definition section for each of the activated collections listed
under the COLLECTIONS: section. In other words, if you have SpeciesConc listed under COLLECTIONS:,
but there is no further information provided about the SpeciesConc collection, then GEOS-Chem will
halt with an error message.

Note: You are not limited to the collections that are pre-defined in the HISTORY.rc configuration file.
You may create additional diagnostic collections to suit your research purposes.

SpeciesConc

Name of the first collection in this HISTORY.rc file.

SpeciesConc.template

Determines the date and time format for the SpeciesConc collection filename suffix, as described below:

• %y4%m2%d2_%h2%n2z.nc4 prints YYYYMMDD_hhmmz.nc4 to the end of each netCDF filename.

• YYYYMMDD is the date in year/month/day format;

22.1. Introduction 109

GCHP, Release 14.3.0

• hhmm is the time in hour:minutes format.

• z denotes “Zulu”, which is an abbreviation for UTC time.

• .nc4 denotes that the data file is in the netCDF-4 format.

Note: For example, the complete file path for the SpeciesConc collection at 00:00 UTC on 2020/01/01
will be ./OutputDir/GEOSChem.SpeciesConc.20200101_0000z.nc4, where:

• EXPID specifies the filename prefix (./OutputDir/GEOSChem)

• SpeciesConc.template specifies the format of the filename suffix (.20200101_0000z.nc4).

SpeciesConc.frequency

Determines how often the diagnostic quantities belonging to the SpeciesConc collection will be saved to
a netCDF file. This can be specified as either hhmmss or YYYYMMDD hhmmss.

In the above example, data belonging to the collection will be written to the file every 6 hours. Because
SpeciesConc is an instantaneous collection, no time-averaging will be performed.

SpeciesConc.format

For GCHP simulations only. This tag indicates the I/O library that will be used.

SpeciesConc.duration

Determines how often a new SpeciesConc netCDF file will be created. Uses the same format as
SpeciesConc.frequency.

SpeciesConc.mode

Determines the averaging method for the SpeciesConc collection. Allowable values are:

• instantaneous: Archives instantaneous values at the interval specified by SpeciesConc.
frequency.

• time-averaged: Archives values averaged over the interval specified by SpeciesConc.
frequency.

SpeciesConc.fields

Lists the diagnostic quantities to be archived in the SpeciesConc collection. Some diagnostic quantities
(e.g. concentrations, fluxes, masses) may also have an extra dimension, which represents species, size
bins, reaction numbers, etc.

For example, to request the ozone species concentration (in mixing ratio units) you may use the field name
SpeciesConcVV_O3. The species name is separated from the quantity name by a single underscore.

Note: For GCHP, each diagnostic field must be followed by 'GCHPchem',. This indicates the ESMF
Gridded Component to which the diagnostics belong.

If you are using GEOS-Chem Classic,you may also use a wildcard to specify a given category of species.
In the above example SpeciesConcVV_?ADV? refers to all advected species and SpeciesConcVV_?ALL?
refers to all species (both advected and non-advected).

Note: GCHP does not allow the use of wildcards. Each diagnostic quantity must be listed individually.

::

110 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Signifies the end of the SpeciesConc definition section. :: may be placed at any column.

SpeciesConc.subset

Name of the second diagnostic collection specified in this sample HISTORY.rc configuration file. In this
collection we will request output to be restricted to a subset of the horizontal grid.

The .template, .frequency, .duration, :mode, and .fields are described for the SpeciesConc
collection above, so we will not repeat them here.

SpeciesConcSubset.LON_RANGE

Defines the longitude range (min max) where diagnostic data will be archived. Data outside of this range
will be ignored. If this option is omitted, values at all longitudes (-180 180) will be included.

SpeciesConcSubset.LAT_RANGE

Defines the latitude range (min max) where diagnostic data will be archived. Data outside of this range
will be ignored. If this option is omitted, values at all latitudes (-90 90) will be included.

SpeciesConcSubset.levels

Specifies the levels that you wish to be included in the diagnostic archiving. If omitted, data at all levels
will be included.

Note: In GEOS-Chem Classic, all levels between the minimum and maximum level specified will be
included in the diagnostic archival. This differs from the behavior in GCHP, which archives only the
specified levels.

ConcAfterChem

Name of the third collection specified in this sample HISTORY.rc configuration file.

The .template, .frequency, .duration, :mode, and .fields are described for the SpeciesConc
collection above, so we will not repeat them here.

ConcAftercChem.mode

In this example, the ConcAfterChem.mode setting indicates that the ConcAfterChem collection will
contain time-averaged data. The averaging interval is set in the

22.1.2 Wildcards (GEOS-Chem Classic only)

For GEOS-Chem Classic diagnostic output, you can use the following wildcards with diagnostic quantities that have a
species/bin/reaction dimension:

22.1. Introduction 111

GCHP, Release 14.3.0

Wildcard Description Example
?ADV? Advected species SpeciesConcVV_?ADV?
?AER? Aerosol species SpeciesConcVV_?AER?
?ALL? All species SpeciesConcVV_?ALL?
?DRY? Dry-deposited species SpeciesConcVV_?DRY?
?DRYALT? Species for the histguide-concabovechem collection SpeciesConcVV_?DRYALT
?DUSTBIN? Dust bin number AODdust550nm_?DUSTBIN?
?FIX? Fixed species in the KPP chemistry mechanism SpeciesConcVV_?FIX?
?GAS? Gas-phase species SpeciesConcVV_?GAS?
?HYG? Aerosol species that undergo hygroscopic growth (e.g. black

carbon)
AODhyg550nm_?HYG?

?KPP? All species (fixed + variable) in the KPP chemistry mechanism SpeciesConcVV_?KPP?
?LOS? Chemical loss species or families SpeciesConcVV_?LOS?
?PHO? Photolyzed species SpeciesConcVV_?PHO?
?PRD? Chemical production species or families SpeciesConcVV_?PRD?
?RRTMG? RRTMG-computed fluxes RadAllSkywSurf_?RRTMG?
?RXN? KPP reaction rates RxnRate_?RXN?
?TOMAS-
BIN?

TOMAS size bins TomasH2SO4Mass_?TOMASBIN?

?UVFLX? UV flux bins UVFluxDiffuse_?UVFLX?
?VAR? Variable species in the KPP mechanism SpeciesConcVV_?VAR?
?WET? Wet-deposited species SpeciesConcVV_?WET

22.1.3 Prefixes

You may add any field from the State_Met and State_Chm objects to any diagnostic collection as well. These fields
must be prefixed as described below:

Wildcard Description Example
Chem_ Request diagnostic output from the State_Chm object Chem_pHCloud
Met_ Request diagnostic output from the State_Met object Met_SPHU

22.1.4 File naming convention

As mentioned above, SpeciesConc.template, GEOS-Chem History files adhere to the following naming convention:

EXPID.collection-name.collection-template

e.g.

../OutputDir/GEOSChem.SpeciesConc.20200101_0000z.nc4

The duration tag of each collection in HISTORY.rc controls how often a new file will be written to disk, as we saw
above:

SpeciesConc.duration: 00000001 000000 # Write a new file each day
SpeciesConcSubset.duration: 00000001 000000 # Write a new file each day
ConcAfterChem.duration: 00000100 000000 # Write a new file each month

112 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Therefore, based on all of these settings in our example HISTORY.rc file, GEOS-Chem will write the following netCDF
files to disk in the current run directory:

GEOSChem.SpeciesConc.20160101_0000z.nc4 GEOSChem.SpeciesConcSubset.20160101_0000z.nc4
GEOSChem.SpeciesConc.20160102_0000z.nc4 GEOSChem.SpeciesConcSubset.20160102_0000z.nc4
GEOSChem.SpeciesConc.20160103_0000z.nc4 GEOSChem.SpeciesConcSubset.20160102_0000z.nc4
GEOSChem.SpeciesConc.20160104_0000z.nc4 GEOSChem.SpeciesConcSubset.20160104_0000z.nc4
... etc ...

GEOSChem.ConcAfterChem.20160101_0000z.nc4
GEOSChem.ConcAfterChem.20160201_0000z.nc4
GEOSChem.ConcAfterChem.20160301_0000z.nc4
GEOSChem.ConcAfterChem.20160401_0000z.nc4
... etc ...

22.1.5 Vertical coordinates in netCDF files

All netCDF files produced by GEOS-Chem (i.e. diagnostic files and restart files) adhere to the the COARDS netCDF
convention. for the lon, lat, and time dimensions.

For the vertical dimension, we have chosen to use the following coordinate variables, emulating the file format of the
NCAR Community Earth System Model (CESM):

variables:
double lev(lev) ;

lev:long_name = "hybrid level at midpoints (1000*(A+B))" ;
lev:units = "level" ;
lev:positive = "down" ;\
lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS" ;

double hyam(lev) ;
hyam:long_name = "hybrid A coefficient at layer midpoints" ;

double hybm(lev) ;
hybm:long_name = "hybrid B coefficient at layer midpoints" ;

double ilev(ilev) ;
ilev:long_name = "hybrid level at interfaces (1000*(A+B))" ;
ilev:units = "level" ;
ilev:positive = "down" ;
ilev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
ilev:formula_terms = "a: hyai b: hybi p0: P0 ps: PS" ;

double hyai(ilev) ;
hyai:long_name = "hybrid A coefficient at layer interfaces" ;

double hybi(ilev) ;
hybi:long_name = "hybrid B coefficient at layer interfaces" ;

double P0 ;
P0:long_name = "reference pressure" ;

The lev variable is used for data that is placed on the midpoints between vertical levels. This is an “approximate” eta
coordinate, which is close to 1 at the surface and close to zero at the atmosphere top.

lev = 0.99250002413, 0.97749990013, 0.962499776, 0.947499955, 0.93250006,
0.91749991, 0.90249991, 0.88749996, 0.87249996, 0.85750006, 0.842500125,
0.82750016, 0.8100002, 0.78750002, 0.762499965, 0.737500105, 0.7125001,

(continues on next page)

22.1. Introduction 113

GCHP, Release 14.3.0

(continued from previous page)

0.6875001, 0.65625015, 0.6187502, 0.58125015, 0.5437501, 0.5062501,
0.4687501, 0.4312501, 0.3937501, 0.3562501, 0.31279158, 0.26647905,
0.2265135325, 0.192541016587707, 0.163661504087706, 0.139115, 0.11825,
0.10051436, 0.085439015, 0.07255786, 0.06149566, 0.05201591, 0.04390966,
0.03699271, 0.03108891, 0.02604911, 0.021761005, 0.01812435, 0.01505025,
0.01246015, 0.010284921, 0.008456392, 0.0069183215, 0.005631801,
0.004561686, 0.003676501, 0.002948321, 0.0023525905, 0.00186788,
0.00147565, 0.001159975, 0.00090728705, 0.0007059566, 0.0005462926,
0.0004204236, 0.0003217836, 0.00024493755, 0.000185422, 0.000139599,
0.00010452401, 7.7672515e-05, 5.679251e-05, 4.0142505e-05, 2.635e-05,
1.5e-05 ;

The lev variable may be used for quick plotting. To compute the actual pressure at the midpoint of the grid box (I,J,L),
you will need to supply your own 2-D surface pressure field (e.g. saved from another diagnostic file):

Pmid = (hyam(L) * PS(I,J)) + hybm(L)

The ilev variable is used for data that is placed on vertical level edges or “interfaces” (hence the “i” in ilev). This is
also an “approximate” eta coordinate.

ilev = 1, 0.98500004826, 0.969999752, 0.9549998, 0.94000011, 0.92500001,
0.90999981, 0.89500001, 0.87999991, 0.86500001, 0.85000011, 0.83500014,
0.82000018, 0.80000022, 0.77499982, 0.75000011, 0.7250001, 0.7000001,
0.6750001, 0.6375002, 0.6000002, 0.5625001, 0.5250001, 0.4875001,
0.4500001, 0.4125001, 0.3750001, 0.3375001, 0.28808306, 0.24487504,
0.208152025, 0.176930008175413, 0.150393, 0.127837, 0.108663, 0.09236572,
0.07851231, 0.06660341, 0.05638791, 0.04764391, 0.04017541, 0.03381001,
0.02836781, 0.02373041, 0.0197916, 0.0164571, 0.0136434, 0.0112769,
0.009292942, 0.007619842, 0.006216801, 0.005046801, 0.004076571,
0.003276431, 0.002620211, 0.00208497, 0.00165079, 0.00130051, 0.00101944,
0.0007951341, 0.0006167791, 0.0004758061, 0.0003650411, 0.0002785261,
0.000211349, 0.000159495, 0.000119703, 8.934502e-05, 6.600001e-05,
4.758501e-05, 3.27e-05, 2e-05, 1e-05 ;

To compute the actual pressure at the bottom and top edges of the grid box (I,J,L), you will need to supply your own
2-D surface pressure field (e.g. saved from another diagnostic file):

Pbot = (hyai(L) * PS(I,J)) + hybi(L)
Ptop = (hyai(L+1) * PS(I,J)) + hybi(L+1)

22.2 Diagnostic collections

The diagnostic collections described in the sections below are used by default in GEOS-Chem simulations. You can
create your own customized collections by modifying the HISTORY.rc file.

The only restriction is that you cannot mix data that is placed on grid box layer edges in the same collection as data
placed on grid box layer centers. This violates the netCDF convention that all data variables have to be defined with
the same vertical dimension.

Note: For diagnostic quantities that have a species/bin/reaction dimension, we will use the abbreviation <name|wc>
to indicate a species/bin/reaction name or wildcard.

114 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

For example, SpeciesConcVV_<name|wc> means that the diagnostic quantity can be a single species
(SpeciesConcVV_O3) or a wildcarded subset of species (SpeciesConcVV_?ADV?).

22.2.1 AdvFluxVert

The AdvFluxVert collection contains diagnostics for vertical transport in advection. In practice, this collection is only
used to obtain the vertical flux of O3 from GEOS-Chem fullchem benchmark simulations. Most GEOS-Chem users
will not need to activate this collection.

Sample definition section for HISTORY.rc

AdvFluxVert.template: '%y4%m2%d2_%h2%n2z.nc4',
AdvFluxVert.frequency: 00000100 000000
AdvFluxVert.duration: 00000100 000000
AdvFluxVert.mode: 'time-averaged'
AdvFluxVert.fields: 'AdvFluxVert_O3',

::

List of diagnostic fields in the AdvFluxVert collection

Diagnostic field Description Units Wildcards
AdvFluxVert_<name|wc>1 Vertical flux of species in advection kg/s ?ADV?

22.2.2 AerosolMass

The AerosolMass collection contains diagnostics for aerosol mass and particulate matter from full-chemistry simula-
tions.

Sample definition section for HISTORY.rc

AerosolMass.template: '%y4%m2%d2_%h2%n2z.nc4',
AerosolMass.frequency: 00000100 000000
AerosolMass.duration: 00000100 000000
AerosolMass.mode: 'time-averaged'
AerosolMass.fields: 'AerMassASOA ',

'AerMassBC ',
'AerMassINDIOL ',
'AerMassISN1OA ',
'AerMassISOA ',
'AerMassLVOCOA ',
'AerMassNH4 ',
'AerMassNIT ',
'AerMassOPOA ',
'AerMassPOA ',
'AerMassSAL ',
'AerMassSO4 ',
'AerMassSOAGX ',
'AerMassSOAIE ',

(continues on next page)

1 Only defined for GEOS-Chem Classic simulations.

22.2. Diagnostic collections 115

GCHP, Release 14.3.0

(continued from previous page)

'AerMassSOAME ',
'AerMassSOAMG ',
'AerMassTSOA ',
'BetaNO ',
'PM25 ',
'TotalBiogenicOA',
'TotalOA ',
'TotalOC ',

::

List of diagnostic fields in the AerosolMass collection

Diagnostic field Description Units
AerMassASOA2 Aerosol products of light aromatics + IVOC oxidation 𝜇𝑔/𝑚3

AerMassBC Aerosol products of light aromatics + IVOC oxidation 𝜇𝑔/𝑚3

AerMassINDIOL2 Generic aerosol-phase organonitrate hydrolysis product 𝜇𝑔/𝑚3

AerMassISN10A2 Aerosol phase 2nd generation hydroxynitrates formed from ISOP + NO3 rxn path-
way

𝜇𝑔/𝑚3

AerMassISOA2 Aerosol products of isoprene oxidation 𝜇𝑔/𝑚3

AerMassLVO-
COA2

Aerosol-phase low-volatility non-IEPOX product of ISOPOOH (RIP) oxidation 𝜇𝑔/𝑚3

AerMassNH4 Ammonium 𝜇𝑔/𝑚3

AerMassNIT Inorganic nitrate aerosol 𝜇𝑔/𝑚3

AerMassPOA2 Aerosols from SVOCs 𝜇𝑔/𝑚3

AerMassOPOA2 Aerosols products of POG oxidation 𝜇𝑔/𝑚3

AerMassSAL Sea salt aerosol (SALA+SALC) 𝜇𝑔/𝑚3

AerMassSO4 Sulfate 𝜇𝑔/𝑚3

AerMassSOAGX2 Aerosol phase glyoxal 𝜇𝑔/𝑚3

AerMassSOAIE2 Aerosol phase IEPOX 𝜇𝑔/𝑚3

AerMassSOAME2 Aerosol phase IMAE 𝜇𝑔/𝑚3

AerMassSOAMG2 Aerosol phase methylglyoxal 𝜇𝑔/𝑚3

AerMassTSOA2 Aerosol products of terpene oxidation 𝜇𝑔/𝑚3

BetaNO2 NO branching ratio 𝜇𝑔/𝑚3

PM25 Particulate matter (d < 2.5 :math:{mu}m`) 𝜇𝑔/𝑚3

TotalBiogenicOA3 Sum of all organic aerosol 𝜇𝑔/𝑚3

TotalOA2 Sum of all organic aerosol 𝜇𝑔/𝑚3

TotalOC Sum of all organic carbon 𝜇𝑔/𝑚3

Notes for the AerosolMass collection

22.2.3 Aerosols

The Aerosols collection contains diagnostics for aerosol optical depth and related quantities from full-chemistry sim-
ulations.

Note: Some diagnostic fields in the Aerosols collection may be computed at up to 3 wavelengths (WL1, WL2, WL3) as
specified in this menu of the geoschem_config.yml file:

2 Only defined for fullchem simulations with complex SOA species.
3 Defined for aerosol-only simulations or fullchem simulations.

116 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

rrtmg_rad_transfer_model:
... etc ...
aod_wavelengths_in_nm:
- 550

For GEOS-Chem simulations that do not use the RRTMG radiative transfer model, you may specify only one wave-
length WL1, which is set to a default value of 550 nm. For GEOS-Chem simulations using RRTMG, you may specify
up to 2 more additional wavelengths (WL2 and WL3). GEOS-Chem will replace the tokens WL1, WL2, WL3 in diagnostic
field names with the corresponding wavelength.

For example, these diagnostic fields:

AODHygWL1_BCPI
AODDustWL1_DST1
AODStratLiquidAerWL1
AODPolarStratCloudWL1
AODSOAfromAqIsopreneWL1
AODStratLiquidAerWL1
AODPolarStratCloudWL1

will be saved to the GEOSChem.Aerosols.YYYYMMDD_hhmmz.nc4 file(s) under these names:

AODHyg550nm_BCPI
AODDust550nm_DST1
AODStratLiquidAer550nm
AODPolarStratCloud550nm
AODSOAfromAqIsoprene550nm
AODStratLiquidAer550nm
AODPolarStratCloud550nm

Sample definition section for HISTORY.rc

Aerosols.template: '%y4%m2%d2_%h2%n2z.nc4',
Aerosols.frequency: 00000100 000000
Aerosols.duration: 00000100 000000
Aerosols.mode: 'time-averaged'
Aerosols.fields: 'AODDust ',

'AODDustWL1_?DUSTBIN? ',
'AODHygWL1_?HYG? ',
'AODSOAfromAqIsopreneWL1 ',
'AODStratLiquidAerWL1 ',
'AODPolarStratCloudWL1 ',
'AerHygroscopicGrowth_?HYG? ',
'AerNumDensityStratLiquid ',
'AerNumDensityStratParticulate',
'AerAqueousVolume ',
'AerSurfAreaDust ',
'AerSurfAreaHyg_?HYG? ',
'AerSurfAreaStratLiquid ',
'AerSurfAreaPolarStratCloud ',
'Chem_AeroAreaMDUST1 ',
'Chem_AeroAreaMDUST2 ',
'Chem_AeroAreaMDUST3 ',

(continues on next page)

22.2. Diagnostic collections 117

GCHP, Release 14.3.0

(continued from previous page)

'Chem_AeroAreaMDUST4 ',
'Chem_AeroAreaMDUST5 ',
'Chem_AeroAreaMDUST6 ',
'Chem_AeroAreaMDUST7 ',
'Chem_AeroAreaSULF ',
'Chem_AeroAreaBC ',
'Chem_AeroAreaOC ',
'Chem_AeroAreaSSA ',
'Chem_AeroAreaSSC ',
'Chem_AeroAreaBGSULF ',
'Chem_AeroAreaICEI ',
'Chem_AeroRadiMDUST1 ',
'Chem_AeroRadiMDUST2 ',
'Chem_AeroRadiMDUST3 ',
'Chem_AeroRadiMDUST4 ',
'Chem_AeroRadiMDUST5 ',
'Chem_AeroRadiMDUST6 ',
'Chem_AeroRadiMDUST7 ',
'Chem_AeroRadiSULF ',
'Chem_AeroRadiBC ',
'Chem_AeroRadiOC ',
'Chem_AeroRadiSSA ',
'Chem_AeroRadiSSC ',
'Chem_AeroRadiBGSULF ',
'Chem_AeroRadiICEI ',
'Chem_WetAeroAreaMDUST1 ',
'Chem_WetAeroAreaMDUST2 ',
'Chem_WetAeroAreaMDUST3 ',
'Chem_WetAeroAreaMDUST4 ',
'Chem_WetAeroAreaMDUST5 ',
'Chem_WetAeroAreaMDUST6 ',
'Chem_WetAeroAreaMDUST7 ',
'Chem_WetAeroAreaSULF ',
'Chem_WetAeroAreaBC ',
'Chem_WetAeroAreaOC ',
'Chem_WetAeroAreaSSA ',
'Chem_WetAeroAreaSSC ',
'Chem_WetAeroAreaBGSULF ',
'Chem_WetAeroAreaICEI ',
'Chem_WetAeroRadiMDUST1 ',
'Chem_WetAeroRadiMDUST2 ',
'Chem_WetAeroRadiMDUST3 ',
'Chem_WetAeroRadiMDUST4 ',
'Chem_WetAeroRadiMDUST5 ',
'Chem_WetAeroRadiMDUST6 ',
'Chem_WetAeroRadiMDUST7 ',
'Chem_WetAeroRadiSULF ',
'Chem_WetAeroRadiBC ',
'Chem_WetAeroRadiOC ',
'Chem_WetAeroRadiSSA ',
'Chem_WetAeroRadiSSC ',
'Chem_WetAeroRadiBGSULF ',

(continues on next page)

118 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

(continued from previous page)

'Chem_WetAeroRadiICEI ',
'Chem_StatePSC ',
'Chem_KhetiSLAN2O5H2O ',
'Chem_KhetiSLAN2O5HCl ',
'Chem_KhetiSLAClNO3H2O ',
'Chem_KhetiSLAClNO3HCl ',
'Chem_KhetiSLAClNO3HBr ',
'Chem_KhetiSLABrNO3H2O ',
'Chem_KhetiSLABrNO3HCl ',
'Chem_KhetiSLAHOClHCl ',
'Chem_KhetiSLAHOClHBr ',
'Chem_KhetiSLAHOBrHCl ',
'Chem_KhetiSLAHOBrHBr ',

::

List of diagnostic fields in the Aerosols collection

Diagnostic field Description Units Wildcard
AODDust4 Mineral dust optical depth

@ WL1
1

AOD-
DustWL1_<name|wc>Page 122, 4

AOD for each dust bin @
WL1

1 ?DUSTBIN?

AOD-
HygWL1_<name|wc>Page 122, 4

AOD @ WL1 for aerosol
species

1 ?HYG?

AODSOAfromAqIsopre-
neWL15

Optical depth of SOA
from aqueous isoprene @
WL1

1

AODStratLiquidAerWL1 Stratospheric liquid opti-
cal depth @ WL1

1

AODPolarStrat-
CloudWL1

Polar stratospheric cloud
type 1a/2 optical depth @
WL1

1

AerHygroscopic-
Growth_<name|wc>Page 122, 4

Hygroscopic growth of
aerosol species

1 ?HYG?

AerNumDensityStratLiq-
uid

Stratospheric liquid
aerosol number density

1/cm3

AerNumDensityStratPar-
ticulate

Stratospheric particulate
aerosol number density

1/cm3

AerAqueousVolume Aqueous aerosol volume cm2/cm3
AerSurfAreaDust Surface area of mineral

dust
cm2/cm3

AerSur-
fAreaHyg_<name|wc>

Surface area of aerosol
species

cm2/cm3 ?HYG?

AerSurfAreaStratLiquid Stratospheric liquid sur-
face area

cm2/cm3

AerSurfaceAreaPo-
larStratCloud

Polar stratospheric cloud
type 1a/2 surface area

cm2/cm3

Chem_AeroAreaMDUST1Page 122, 4Dry aerosol area for min-
eral dust (0.15 𝜇𝑚)

cm2/cm3

Chem_AeroAreaMDUST2Page 122, 4Dry aerosol area for min-
eral dust (0.25 𝜇𝑚)

cm2/cm3

continues on next page

22.2. Diagnostic collections 119

GCHP, Release 14.3.0

Table 1 – continued from previous page
Diagnostic field Description Units Wildcard
Chem_AeroAreaMDUST3Page 122, 4Dry aerosol area for min-

eral dust (0.4 𝜇𝑚)
cm2/cm3

Chem_AeroAreaMDUST4Page 122, 4Dry aerosol area for min-
eral dust (0.8 𝜇𝑚)

cm2/cm3

Chem_AeroAreaMDUST5Page 122, 4Dry aerosol area for min-
eral dust (1.5 𝜇𝑚)

cm2/cm3

Chem_AeroAreaMDUST6Page 122, 4Dry aerosol area for min-
eral dust (2.5 𝜇𝑚)

cm2/cm3

Chem_AeroAreaMDUST7Page 122, 4Dry aerosol area for min-
eral dust (4.0 𝜇𝑚)

cm2/cm3

Chem_AeroAreaSULFPage 122, 4Dry aerosol area for sul-
fate aerosol

cm2/cm3

Chem_AeroAreaBCPage 122, 4 Dry aerosol area for black
carbon

cm2/cm3

Chem_AeroAreaOCPage 122, 4 Dry aerosol area for or-
ganic carbon

cm2/cm3

Chem_AeroAreaSSAPage 122, 4Dry aerosol area for sea
salt aerosol, accumulation
mode

cm2/cm3

Chem_AeroAreaSSCPage 122, 4Dry aerosol area for sea
salt aerosol, coarse mode

cm2/cm3

Chem_AeroAreaBGSULF Dry aerosol area for back-
ground stratospheric sul-
fate

cm2/cm3

Chem_AeroAreaICEI Dry aerosol area for irreg-
ular ice cloud

cm2/cm3

Chem_AeroRadiMDUST1Page 122, 4Dry aerosol radius for
mineral dust (0.15 𝜇𝑚)

cm

Chem_AeroRadiMDUST2Page 122, 4Dry aerosol radius for
mineral dust (0.25 𝜇𝑚)

cm

Chem_AeroRadiMDUST3Page 122, 4Dry aerosol radius for
mineral dust (0.4 𝜇𝑚)

cm

Chem_AeroRadiMDUST4Page 122, 4Dry aerosol radius for
mineral dust (0.8 𝜇𝑚)

cm

Chem_AeroRadiMDUST5Page 122, 4Dry aerosol radius for
mineral dust (1.5 𝜇𝑚)

cm

Chem_AeroRAdiMDUST6Page 122, 4Dry aerosol radius for
mineral dust (2.5 𝜇𝑚)

cm

Chem_AeroRadiMDUST7Page 122, 4Dry aerosol radius for
mineral dust (4.0 𝜇𝑚)

cm

Chem_AeroRadiSULFPage 122, 4Dry aerosol radius for sul-
fate aerosol

cm

Chem_AeroRadiBCPage 122, 4 Dry aerosol radius for
black carbon

cm

Chem_AeroRadiOCPage 122, 4 Dry aerosol radius for or-
ganic carbon

cm

Chem_AeroRadiSSAPage 122, 4Dry aerosol radius for sea
salt aerosol, accumulation
mode

cm

continues on next page

120 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Table 1 – continued from previous page
Diagnostic field Description Units Wildcard
Chem_AeroRadiSSCPage 122, 4Dry aerosol radius for sea

salt aerosol, coarse mode
cm

Chem_AeroRadiBGSULF Dry aerosol radius for
background stratospheric
sulfate

cm

Chem_AeroRadiICEI Dry aerosol Radius for ir-
regular ice cloud

cm

Chem_WetAeroAreaMDUST1Page 122, 4Wet aerosol area for min-
eral dust (0.15 𝜇𝑚)

cm2/cm3

Chem_WetAeroAreaMDUST2Page 122, 4Wet aerosol area for min-
eral dust (0.25 𝜇𝑚)

cm2/cm3

Chem_WetAeroAreaMDUST3Page 122, 4Wet aerosol area for min-
eral dust (0.4 𝜇𝑚)

cm2/cm3

Chem_WetAeroAreaMDUST4Page 122, 4Wet aerosol area for min-
eral dust (0.8 𝜇𝑚)

cm2/cm3

Chem_WetAeroAreaMDUST5Page 122, 4Wet aerosol area for min-
eral dust (1.5 𝜇𝑚)

cm2/cm3

Chem_WetAeroAreaMDUST6Page 122, 4Wet aerosol area for min-
eral dust (2.5 𝜇𝑚)

cm2/cm3

Chem_AeroAreaMDUST7Page 122, 4Dry aerosol area for min-
eral dust (4.0 𝜇𝑚)

cm2/cm3

Chem_WetAeroAreaSULFPage 122, 4Wet aerosol area for sul-
fate aerosol

cm2/cm3

Chem_WetAeroAreaBCPage 122, 4Wet aerosol area for black
carbon

cm2/cm3

Chem_WetAeroAreaOCPage 122, 4Wet aerosol area for or-
ganic carbon

cm2/cm3

Chem_WetAeroAreaSSAPage 122, 4Wet aerosol area for sea
salt aerosol, accumulation
mode

cm2/cm3

Chem_WetAeroAreaSSCPage 122, 4Wet aerosol area for sea
salt aerosol, coarse mode

cm2/cm3

Chem_WetAeroAreaBGSULFWet aerosol area for back-
ground stratospheric sul-
fate

cm2/cm3

Chem_WetAeroAreaICEI Wet aerosol area for irreg-
ular ice cloud

cm2/cm3

Chem_WetAeroRadiMDUST1Page 122, 4Wet aerosol radius for
mineral dust (0.15 𝜇𝑚)

cm

Chem_WetAeroRadiMDUST2Page 122, 4Wet aerosol radius for
mineral dust (0.25 𝜇𝑚)

cm

Chem_WetAeroRadiMDUST3Page 122, 4Wet aerosol radius for
mineral dust (0.4 𝜇𝑚)

cm

Chem_WetAeroRadiMDUST4Page 122, 4Wet aerosol radius for
mineral dust (0.8 𝜇𝑚)

cm

Chem_WetAeroRadiMDUST5Page 122, 4Wet aerosol radius for
mineral dust (1.5 𝜇𝑚)

cm

Chem_WetAeroRAdiMDUST6Page 122, 4Wet aerosol radius for
mineral dust (2.5 𝜇𝑚)

cm

continues on next page

22.2. Diagnostic collections 121

GCHP, Release 14.3.0

Table 1 – continued from previous page
Diagnostic field Description Units Wildcard
Chem_WetAeroRadiMDUST7Page 122, 4Wet aerosol radius for

mineral dust (4.0 𝜇𝑚)
cm

Chem_WetAeroRadiSULF4 Wet aerosol radius for sul-
fate aerosol

cm

Chem_WetAeroRadiBC4 Wet aerosol radius for
black carbon

cm

Chem_WetAeroRadiOC4 Wet aerosol radius for or-
ganic carbon

cm

Chem_WetAeroRadiSSA4 Wet aerosol radius for sea
salt aerosol, accumulation
mode

cm

Chem_WetAeroRadiSSC4 Wet aerosol radius for sea
salt aerosol, coarse mode

cm

Chem_WetAeroRadiBGSULFWet aerosol radius for
background stratospheric
sulfate

cm

Chem_WetAeroRadiICEI Wet aerosol Radius for ir-
regular ice cloud

cm

Chem_KhetiSLAN2O5H2O Sticking coefficient for
N2O5 + H2O rxn

1

Chem_KhetiSLAN2O5HCl Sticking coefficient for
N2O5 + HCl rxn

1

Chem_KhetiSLACLNO3H2OSticking coefficient for
ClNO3 + H2O rxn

1

Chem_KhetiSLACLNO3HCLSticking coefficient for
ClNO3 + HCl rxn

1

Chem_KhetiSLACLNO3HBRSticking coefficient for
ClNO3 + HBr rxn

1

Chem_KhetiSLABRNO3H2OSticking coefficient for
BrNO3 + H2O rxn

1

Chem_KhetiSLABRNO3HCLSticking coefficient for
BrNO3 + HCl rxn

1

Chem_KhetiSLAHOCLHCLSticking coefficient for
HOCl + HCl rxn

1

Chem_KhetiSLAHOCLHBRSticking coefficient for
HOCl + HBr rxn

1

Chem_KhetiSLAHOBRHCLSticking coefficient for
HOBr + HCl rxn

1

Chem_KhetiSLAHOBRHBRSticking coefficient for
HOBr + HBr rxn

1

4 Defined for aerosol-only and fullchem simulations.
5 Only defined for fullchem simulation with complex SOA species.

122 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Notes for the Aerosols colletion

22.2.4 BoundaryConditions

The BoundaryConditions diagnostic collection contains advected species concentrations (archived from a global sim-
ulation) that will be used by GEOS-Chen Classic nested-grid simulations as transport boundary conditions.

Sample definition section for HISTORY.rc

BoundaryConditions.template: '%y4%m2%d2_%h2%n2z.nc4',
BoundaryConditions.frequency: 00000000 030000
BoundaryConditions.duration: 00000100 000000
BoundaryConditions.mode: 'instantaneous'
BoundaryConditions.fields: 'SpeciesBC_?ADV?',

::

List of diagnostic fields in the BoundaryConditions collection

Diagnostic
field

Description Units Wild-
card

SpeciesBC_<name|wc>6Advected species concentrations used as boundary conditions GEOS-
Chem Classic nested-grid simulations

mol/mol
dry air

?ADV?

22.2.5 Budget

The Budget diagnostic collection is a 2D diagnostic containing the mass tendencies per grid cell, in kg/s, for each
species within a region of the column and across each GEOS-Chem component. The diagnostic is calculated by taking
the difference in vertically summed column mass before and after major GEOS-Chem components.

There are three pre-defined column regions defined for this diagnostic: troposphere-only, PBL-only, and full column,
as well as a user-defined column region. By post-processing this diagnostic you can calculate global mass change or
mass change across regions by summing the diagnostic values for the relevant grid cells. You can also retrieve the
mass change across a longer chunk of time by multiplying the time-averaged output by the number of seconds in the
averaging period.

While there are seven major components in GEOS-Chem, there are only six implemented for the budget diagnostics.
Emissions and dry deposition components are combined together for this diagnostic because of the way they are applied
at the same time. Furthermore, if using non-local PBL mixing then the emissions and dry deposition budget diagnostic
will not capture all fluxes from these sources and sinks. This is because emissions and dry deposition tendencies below
the PBL are applied within mixing instead. When using full mixing, however, mixing and emissions/dry deposition
budget diagnostics are fully separated.

Sample definition section for HISTORY.rc

Budget.template: '%y4%m2%d2_%h2%n2z.nc4',
Budget.frequency: 00000100 000000
Budget.duration: 00000100 000000
Budget.mode: 'time-averaged'
Budget.fields: 'BudgetChemistryFull_?ADV? ',

'BudgetChemistryPBL_?ADV? ',
'BudgetChemistryTrop_?ADV? ',

(continues on next page)

6 This diagnostic is only for use with GEOS-Chem Classic.

22.2. Diagnostic collections 123

GCHP, Release 14.3.0

(continued from previous page)

'BudgetEmisDepFull_?ADV? ',
'BudgetEmisDepTrop_?ADV? ',
'BudgetEmisDepPBL_?ADV? ',
'BudgetTransportFull_?ADV? ',
'BudgetTransportTrop_?ADV? ',
'BudgetTransportPBL_?ADV? ',
'BudgetMixingFull_?ADV? ',
'BudgetMixingTrop_?ADV? ',
'BudgetMixingPBL_?ADV? ',
'BudgetConvectionFull_?ADV?',
'BudgetConvectionTrop_?ADV?',
'BudgetConvectionPBL_?ADV? ',
'BudgetWetDepFull_?WET? ',
'BudgetWetDepTrop_?WET? ',
'BudgetWetDepPBL_?WET? ',

::

List of diagnostic fields in the Budget collection

Diagnostic field Mass tendency (kg/s) across . . . Wild-
card

BudgetChemistryFull_<name|wc> Chemistry (full atmosphere) ?ADV?
BudgetChemistryLevs1to35_<name|wc>7 Chemistry (fixed level range) ?ADV?
BudgetChemistryPBL_<name|wc> Chemistry (PBL only) ?ADV?
BudgetChemistryTrop_<name|wc> Chemistry (troposphere only) ?ADV?
BudgetConvectionFull_<name|wc> Convection (full atmosphere) ?ADV?
BudgetConvectionLevs1to35_<name|wc>7 Convection (fixed level range) ?ADV?
BudgetConvectionPBL_<name|wc> Convection (PBL only) ?ADV?
BudgetConvectionTrop_<name|wc> Convection (troposphere only) ?ADV?
BudgetEmisDepFull_<name|wc>8 Emissions & dry deposition (full atmosphere) ?ADV?
BudgetEmisDepLevs1to35_<name|wc>78 Emissions & dry deposition (fixed level range) ?ADV?
BudgetEmisDepPBL_<name|wc>8 Emissions & dry deposition (PBL only) ?ADV?
BudgetEmisDepTrop_<name|wc>8 Emissions & dry deposition (troposphere only) ?ADV?
BudgetMixingFull_<name|wc>9 PBL mixing (full atmosphere) ?ADV?
BudgetMixingLevs1to35_<name|wc>79 PBL mixing (full atmosphere) (fixed level range) ?ADV?
BudgetMixingPBL_<name|wc>9 PBL mixing (PBL only) ?ADV?
BudgetMixingTrop_<name|wc>9 PBL mixing (troposphere only) ?ADV?
BudgetTransportFull_<name|wc> Transport (full attmosphere) ?ADV?
BudgetTransportLevs1to35_<name|wc>7 Transport (fixed level range) ?ADV?
BudgetTransportPBL_<name|wc> Transport (PBL only) ?ADV?
BudgetTransportTrop_<name|wc> Transport (troposphere only) ?ADV?
BudgetWetDepFull_<name|wc> Wet deposition (full atmosphere) ?WET?
BudgetWetDepLevs1to35_<name|wc>7 Wet deposition (fixed level range) ?WET?
BudgetWetDepPBL_<name|wc> Wet deposition (PBL only) ?WET

7 These diagnostic quantities allow you to compute mass tendencies in a fixed level range. The lower level and upper level of the range is specified
in the diagnostic name (LevsXtoY). Levels 1 to 35 (surface to approximately the tropopause) are the default settings.

8 The emissions and dry deposition budget diagnostics will not capture all fluxes if using the non-local PBL mixing scheme since these tendencies
are applied within mixing in vdiff_mod.F90 below the PBL. When using full mixing, however, mixing and emissions/dry deposition are fully
separated.

9 The mixing budget diagnostics includes the application of emissions and dry deposition below the PBL if using the non-local PBL mixing
scheme (vdiff).

124 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Notes for the Budget collection

22.2.6 Carbon

The Carbon collection contains diagnostic fields specific to the GEOS-Chem carbon gases simulation.

Sample definition section for HISTORY.rc

Carbon.template: '%y4%m2%d2_%h2%n2z.nc4',
Carbon.frequency: 00000100 000000
Carbon.duration: 00000100 000000
Carbon.mode: 'time-averaged'
Carbon.fields: 'OHconcAfterChem',

'ProdCOfromCH4 ',
'ProdCOfromNMVOC',
'ProdCO2fromCO ',

::

List of diagnostic fields in the Carbon collection

Diagnostic field Description Units
OHconcAfterChem OH concentration immediately after chemistry molec/cm3
ProdCOfromCH4 Production of CO from CH4 molec/cm3
ProdCOfromNMVOC Production of CO from non-methane VOCs molec/cm3
ProdCO2fromCO Production of CO2 from CO oxidation molec/cm3

22.2.7 CH4

The CH4 collection contains diagnostics for loss of CH4 and OH concentration for the CH4 simulation.

Attention: This simulation is slated to be replaced by the GEOS-Chem carbon gases simulation. when this
happens, the CH4 collection will be replaced by the Carbon collection.

Sample definition section for HISTORY.rc

CH4.template: '%y4%m2%d2_%h2%n2z.nc4',
CH4.frequency: 00000100 000000
CH4.duration: 00000100 000000
CH4.mode: 'time-averaged'
CH4.fields: 'OHconcAfterChem ',

'LossCH4byClinTrop ',
'LossCH4byOHinTrop ',
'LossCH4inStrat ',

::

List of diagnostic fields in the CH4 collection

22.2. Diagnostic collections 125

GCHP, Release 14.3.0

Diagnostic field Description Units
LossCH4byClinTrop Loss of CH4 by raction with Cl in the troposphere kg/s
LossCH4byOHinTrop Loss of CH4 by raction with OH in the troposphere kg/s
LossCH4inStrat Loss of CH4 in the stratosphere kg/s
OHconcAfterChem OH concentration after chemistry kg/s

22.2.8 CloudConvFlux

The CloudConvFlux collection contains diagnostics for mass fluxes in cloud convection.

Sample definition section for HISTORY.rc

CloudConvFlux.template: '%y4%m2%d2_%h2%n2z.nc4',
CloudConvFlux.frequency: 00000100 000000
CloudConvFlux.duration: 00000100 000000
CloudConvFlux.mode: 'time-averaged'
CloudConvFlux.fields: 'CloudConvFlux_?ADV?',

::

List of diagnostic fields in the CloudConvFlux collection

Diagnostic field Description Units Wildcards
CloudConvFlux_<name|wc> Mass change due to cloud convection kg/s ?ADV? ?GAS? ?WET?

22.2.9 CO

The CO collection contains diagnostic fields for the GEOS-Chem tagged CO simulation.

Attention: The tagged CO simulation is slated to be replaced by the GEOS-Chem carbon gases simulation. When
this happens, the CO collection will be replaced with the Carbon collection.

CO.template: '%y4%m2%d2_%h2%n2z.nc4',
CO.frequency: 00000100 000000
CO.duration: 00000100 000000
CO.mode: 'time-averaged'
CO.fields: 'ProdCOfromCH4 ',

'ProdCOfromNMVOC',
::

List of diagnostic fields in the CO collection

Diagnostic field Description Units
ProdCOfromCH4 Production of CO from CH4 kg/s
ProdCOfromNMVOC Production of CO from non-methane VOCs kg/s

126 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

22.2.10 CO2

The CO2 collection contains diagnostic outputs from the GEOS-Chem CO2 simulation.

Attention: The CO2 simulation is slated to be replaced by the new GEOS-Chem carbon gases simulation. When
this happens, the CO2 collection will be replaced with the Carbon collection.

Note: Several other diagnostics for the CO2 simulation are archived via HEMCO diagnostics.

Sample definition section for HISTORY.rc

CO2.template: '%y4%m2%d2_%h2%n2z.nc4',
CO2.frequency: 00000100 000000
CO2.duration: 00000100 000000
CO2.mode: 'time-averaged'
CO2.fields: 'ProdCO2fromCO',

::

List of diagnostic fields in the CO2 collection

Diagnostic field Description Units
ProdCO2fromCO Chemical production of CO2 from CO oxidation kg/m2/s

22.2.11 ConcAboveSfc

The ConcAboveSfc diagnostic collection uses dry deposition quantities (surface resistance, dry deposition velocity)
to compute the species concentration of O3 and HNO3 at a given altitude (such as 10 m) above the surface. This
will facilitate comparison between GEOS-Chem and observational networks (e.g. CASTNET), which often place
instruments above the canopy at approx. 10m height.

Attention: If dry deposition is turned off in your simulation, then you must disable this collection, or else your
run will stop with an error.

Sample definition section for HISTORY.rc

ConcAboveSfc.template: '%y4%m2%d2_%h2%n2z.nc4',
ConcAboveSfc.mode: 'instantaneous'
ConcAboveSfc.fields: 'DryDepRaALT1 ',

'DryDepVelForALT1_?DRYALT?',
'SpeciesConcALT1_?DRYALT? ',

::

List of diagnostic fields in the ConcAboveSfc collection

22.2. Diagnostic collections 127

https://hemco.readthedocs.io/en/latesthco-ref-guide/diagnostics.html

GCHP, Release 14.3.0

Diagnostic field Description Units Wild-
card

DryDepRaALT110 Dry deposition aerodynamic resistance at ALT1 me-
ters above the surface

s/cm

DryDe-
pVelForALT1_<name|wc>Page 128, 1011

Dry deposition velocity of species tagged with the
?DRYALT?wildcard

cm/s ?DRYALT?

SpeciesCon-
cALT1_<name|wc>1011

Concentration of species tagged with the
?DRYALT? wildcard

mol/mol
dry air

?DRYALT?

Notes about the ConcAboveSfc collection

22.2.12 ConcAfterChem

The ConcAfterChem collection contains diagnostics for OH, HO2, etc. species immediately upon exiting the chemical
solver.

Sample definition section for HISTORY.rc

ConcAfterChem.template: '%y4%m2%d2_%h2%n2z.nc4',
ConcAfterChem.frequency: 00000100 000000
ConcAfterChem.duration: 00000100 000000
ConcAfterChem.mode: 'time-averaged'
ConcAfterChem.fields: 'OHconcAfterChem ',

'HO2concAfterChem',
'O1DconcAfterChem',
'O3PconcAfterChem',
'O3concAfterChem ',
'RO2concAfterChem',

::

List of diagnostic fields in the ConcAfterChem collection

Diagnostic field Description Units
HO2concAfterChem HO2 immediately after exiting the chemical solver mol/mol
O1DconcAfterChem O1D immediately after exiting the chemical solver molec/cm3
O3concAfterChem O3 immediately after exiting the chemical solver molec/cm3
O3PconcAfterChem O3P immediately after exiting the chemical solver molec/cm3
OHconcAfterChem OH immediately after exiting the chemical solver molec/cm3
RO2concAfterChem RO2 immediately after exiting the chemical solver molec/cm3

10 Replace ALT1 with the altitude in meters above the surface at which you would like these quantities computed. For example:
DryDepVelFor10m_?DRYALT?, etc.

11 Currently the ?DRYALT? species are O3 and HNO3.

128 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

22.2.13 DryDep

The DryDep collection contains diagnostics for the flux and velocity of each species lost to dry-deposition.

Sample definition section for HISTORY.rc

DryDep.template: '%y4%m2%d2_%h2%n2z.nc4',
DryDep.frequency: 00000100 000000
DryDep.duration: 00000100 000000
DryDep.mode: 'time-averaged'
DryDep.fields: 'DryDepVel_?DRY?',

'DryDepMix_?DRY?',
'DryDepChm_?DRY?',
'DryDep_?DRY? ',

::

List of diagnostic fields in the DryDep collection

Diagnostic field Description Units Wildcard
DryDep_<name|wc> Total dry deposition flux molec/cm2/s ?DRY?
DryDepChm_<name|wc> Dry deposition flux (computed in chemistry) molec/cm2/s ?DRY?
DryDepMix_<name|wc> Dry deposition flux (computed in the PBL) molec/cm2/s ?DRY?
DryDepVel_<name|wc> Dry deposition velocity cm/s ?DRY?

22.2.14 JValues

The JValues collection contains diagnostics for photolysis rates for various chemical species, obtained from the pho-
tolysis mechanism.

Sample definition section for HISTORY.rc

JValues.template: '%y4%m2%d2_%h2%n2z.nc4',
JValues.frequency: 00000100 000000
JValues.duration: 00000100 000000
JValues.mode: 'time-averaged'
JValues.fields: 'Jval_?PHO?',

'JvalO3O1D ',
'JvalO3O3P ',

::

List of diagnostic fields in the JValues collection

Diagnostic field Description Units Wildcard
Jval_<name|wc> Photolysis rates 1/s ?PHO?
JvalO3O1D Photolysis rate of O3 → O1D 1/s
JvalO3O3P Photolysis rate of O3 → O3P 1/s

22.2. Diagnostic collections 129

GCHP, Release 14.3.0

22.2.15 KppARDiags

The KppARDiags collection contains diagnostics for the KPP Rosenbrock solver with mechanism auto-reduction. You
may leave this collection disabled unless you are interested in assessing the solver’s performance.

Sample definition section for HISTORY.rc

KppARDiags.template: '%y4%m2%d2_%h2%n2z.nc4',
KppARDiags.frequency: 00000100 000000
KppARDiags.duration: 00000100 000000
KppARDiags.mode: 'time-averaged'
KppARDiags.fields: 'KppAutoReducerNVAR',

'KppAutoReduceThres',
'KppcNONZERO ',

::

List of diagnostic fields in the KppARDiags collection

Diagnostic field Description Units
KppAutoReduc-
erNVAR

Number of species (rNVAR) in the auto-reduced mechanism count

KppAutoRe-
duceThres

Auto-reduction threshold molec/cm3/s

KppcNONZERO Number of nonzero elements (cNONZERO) in LU decomposition in the auto-
reduced mechanism

count

22.2.16 KppDiags

The KppDiags collection contains KPP solver diagnostics. You may leave this collection disabled unless you are
interested in assessing the solver’s performance.

Sample definition section for HISTORY.rc

KppDiags.template: '%y4%m2%d2_%h2%n2z.nc4',
KppDiags.frequency: 00000100 000000
KppDiags.duration: 00000100 000000
KppDiags.mode: 'time-averaged'
KppDiags.fields: 'KppIntCounts',

'KppJacCounts',
'KppTotSteps ',
'KppAccSteps ',
'KppRejSteps ',
'KppLuDecomps',
'KppSubsts ',
'KppSmDecomps',

::

List of diagnostic fields in the KppDiags collection

130 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Diagnostic field Description Units
KppAccSteps Number of accepted integration timesteps count
KppIntCounts Number of times the KPP integrator was called count
KppJacCounts Number of times the KPP Jacobian matrix was constructed count
KppLuDecomps Number of LU decompositions performed count
KppSmDecomps12 Number of singular matrix decompositions performed count
KppSubsts Number of matrix substitutions performed (both forward & backward substitutions) count
KppRejSteps Number of rejected integration timesteps count
KppTotSteps Total number of integration timesteps count

22.2.17 LevelEdgeDiags

The LevelEdgeDiags collection contains diagnostics for quantities (mostly met fields) that are defined on the vertical
edges of each grid box. According to the COARDS convention, all of the data variables in a netCDF file must be
defined with the same vertical dimension.

Sample definition section for HISTORY.rc

LevelEdgeDiags.template: '%y4%m2%d2_%h2%n2z.nc4',
LevelEdgeDiags.frequency: 00000100 000000
LevelEdgeDiags.duration: 00000100 000000
LevelEdgeDiags.mode: 'time-averaged'
LevelEdgeDiags.fields: 'Met_CMFMC ',

'Met_PEDGE ',
'Met_PEDGEDRY',
'Met_PFICU ',
'Met_PFILSAN ',
'Met_PFLCU ',
'Met_PFLLSAN ',

::

List of diagnostic fields in the LevelEdgeDiags collection

Diagnostic field Description Units
Met_CMFMC Upward moist convective mass flux kg/m2/s
Met_PEDGE Surface pressure at level edges (based on moist air) hPa
Met_PEDGEDRY Surface pressure at level edges (based on dry air) hPa
Met_PFICU 3d flux of ice convective precipitation kg/m2/s
Met_PFILSAN 3d flux of ice non-convective precipitation kg/m2/s
Met_PFLCU 3d flux of liquid convective precipitation kg/m2/s
Met_PFLLSAN 3d flux of liquid non-convective precipitation kg/m2/s

12 For Rosenbrock solvers, KppSmDecomps will be zero everywhere, because the Rosenbrock method utilizes LU decomposition instead of
singular matrix decomposition.

22.2. Diagnostic collections 131

GCHP, Release 14.3.0

22.2.18 MercuryChem

The MercuryChem collection contains concentrations and prod/loss diagnostic outputs for the GEOS-Chem mercury
simulation.

Sample definition section for HISTORY.rc

MercuryChem.template: '%y4%m2%d2_%h2%n2z.nc4',
MercuryChem.frequency: ${RUNDIR_HIST_TIME_AVG_FREQ}
MercuryChem.duration: ${RUNDIR_HIST_TIME_AVG_DUR}
MercuryChem.mode: 'time-averaged'
MercuryChem.fields: 'HgBrAfterChem ',

'HgClAfterChem ',
'HgOHAfterChem ',
'HgBrOAfterChem ',
'HgClOAfterChem ',
'HgOHOAfterChem ',
'Hg2GToHg2P ',
'Hg2PToHg2G ',
'Hg2GasToHg2StrP',
'Hg2GasToSSA ',

::

List of diagnostic fields in the MercuryChem collection

Diagnostic field Description Units
Hg2GToHg2P Hg2 gas transferred to Hg2P molec/cm3/s
Hg2GasToHg2StrP Hg2 gas transferred to Hg2StrP molec/cm3/s
Hg2GasToSSA Hg2 gas transferred to sea salt aerosol molec/cm3/s
Hg2PToHg2G Hg2P transferred to Hg2 gas molec/cm3/s
HgBrAfterChem HgBr concentration immediately after chemistry mol/mol
HgBrOAfterChem HgBrO concentration immediately after chemistry mol/mol
HgClAfterChem HgCl concentration immediately after chemistry mol/mol
HgClOAfterChem HgClO concentration immediately after chemistry mol/mol
HgOHAfterChem HgOH concentration immediately after chemistry mol/mol
HgOHOAfterChem HgOHO concentration immediately after chemistry mol/mol

22.2.19 MercuryEmis

The MercuryEmis collection contains emission diagnostics for the GEOS-Chem mercury simulation.

Note: Several other mercury emission diagnostics are archived via HEMCO diagnostics.

Sample definition section for HISTORY.rc

MercuryEmis.template: '%y4%m2%d2_%h2%n2z.nc4',
MercuryEmis.frequency: 00000100 000000
MercuryEmis.duration: 00000100 000000
MercuryEmis.mode: 'time-averaged'
MercuryEmis.fields: 'EmisHg0land ',

'EmisHg0ocean',
(continues on next page)

132 Chapter 22. Archive output with the History diagnostics

https://hemco.readthedocs.io/en/latesthco-ref-guide/diagnostics.html

GCHP, Release 14.3.0

(continued from previous page)

'EmisHg0soil ',
'EmisHg0snow ',

::

List of diagnostic fields in the MercuryEmis collection

Diagnostic field Description Units
EmisHg0land Re-emission of Hg0 from land kg/s
EmisHg0ocean Emissions of Hg0 from oceans kg/s
EmisHg0snow Emission of Hg0 from snowpack kg/s
EmisHg0soil Emissions of Hg0 from soils kg/s

22.2.20 MercuryOcean

The MercuryOcean collection contains diagnostics from the mercury ocean model, used in the GEOS-Chem mercury
simulation.

Sample definition section for HISTORY.rc

MercuryOcean.template: '%y4%m2%d2_%h2%n2z.nc4',
MercuryOcean.frequency: 00000000 040000
MercuryOcean.duration: 00000000 040000
MercuryOcean.mode: 'time-averaged'
MercuryOcean.fields: 'FluxHg0fromAirToOcean ',

'FluxHg0fromOceanToAir ',
'FluxHg2HgPfromAirToOcean',
'FluxHg2toDeepOcean ',
'FluxOCtoDeepOcean ',
'MassHg0inOcean ',
'MassHg2inOcean ',
'MassHgPinOcean ',
'MassHgTotalInOcean ',

::

List of diagnostic fields in the MercuryOcean collection

Diagnostic field Description Units
FluxHg0fromAirToOcean Deposition flux of Hg0 from the atmosphere to the ocean kg/s
FluxHg0fromOceanToAir Volatization flux of Hg0 from the ocean to the atmosphere kg/s
FluxHg2HgPfromAirToOcean Deposition flux of Hg2 + HgP from atmosphere to ocean kg/s
FluxHg2toDeepOcean Flux of Hg2 sunk to the deep ocean kg/s
MassHg0inOcean Total mass of oceanic Hg0 kg
MassHg2inOcean Total mass of oceanic Hg2 kg
MassHgPinOcean Total mass of oceanic HgP kg
MassHgTotalInOcean Total mass of all organic mercury kg

22.2. Diagnostic collections 133

GCHP, Release 14.3.0

22.2.21 Metrics

The Metrics collection contains diagnostics for computing OH metrics from a GEOS-Chem full chemistry simulation
(needed for benchmarking).

To compute the OH metrics, you must run the Python script metrics.py that ships with each fullchem or CH4 run
directory.

Sample definition section for HISTORY.rc

Metrics.template: '%y4%m2%d2_%h2%n2z.nc4',
Metrics.frequency: 'End',
Metrics.duration: 'End',
Metrics.mode: 'time-averaged'
Metrics.fields: 'AirMassColumnFull ',

'LossOHbyCH4columnTrop ',
'LossOHbyMCFcolumnTrop ',
'OHwgtByAirMassColumnFull',

::

List of diagnostic fields in the Metrics collection

Diagnostic field Description Units
AirMassColumnFull Air mass column (full atmosphere) kg
LossOHbyCH4columnTrop Loss rate of CH4 by OH (tropospheric column sums) molec/cm3
LossOHbyMCFcolumnTrop Loss rate of CH4 by CH3CCl3 aka MCF (tropospheric column

sums)
molec/cm3

OHwgtByAirMassColumn-
Full

Airmass-weighted OH concentration (full atmosphere column
sums)

kg air/kg
OH/m3

22.2.22 ProdLoss

The ProdLoss collection contains chemical production and loss rates.

Sample definition section for HISTORY.rc

ProdLoss.template: '%y4%m2%d2_%h2%n2z.nc4',
ProdLoss.frequency: 00000100 000000
ProdLoss.duration: 00000100 000000
ProdLoss.mode: 'time-averaged'
ProdLoss.fields: 'Prod_?PRD? ',

'ProdBCPIfromBCPO ',
'ProdOCPIfromOCPO ',
'ProdHMSfromSO2andHCHOinCloud',
'ProdSO2andHCHOfromHMSinCloud',
'ProdSO4fromHMSinCloud ',
'ProdSO4fromH2O2inCloud ',
'ProdSO4fromO2inCloudMetal ',
'ProdSO4fromO3inCloud ',
'ProdSO4fromO3inSeaSalt ',
'ProdSO4fromHOBrInCloud ',
'ProdSO4fromSRO3 ',
'ProdSO4fromSRHObr ',

(continues on next page)

134 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

(continued from previous page)

'ProdSO4fromO3s ',
'Loss_?LOS? ',
'LossHNO3onSeaSalt ',
'ProdCOfromCH4 ',
'ProdCOfromNMVOC ',

::

List of diagnostic fields in the ProdLoss collection

Diagnostic field Description Units Wild-
card

Loss_<name|wc> Chemical loss for a given species or family molec/cm3 ?LOS?
LossHNO3onSeaSalt15 L(HNO3) on sea salt aerosols kg S/s
Prod_<name|wc> Chemical production for a given species or family molec/cm3 ?PRD?
ProdBCPIfromBCPO15 Production of hydrophilic BC from hydrophobic BC kg
ProdCOfromCH416 P(CO) from CH4 molec/cm3
ProdCOfromNMVOC16 P(CO) from NMVOCs SO3– loss by OH molec/cm3
ProdOCPIfromOCPO15 Production of hydrophilic OC from hydrophobic OC kg
ProdMSAfromDMS14 P(MSA) from DMS kg S/s
ProdNIT-
fromHNO3uptakeOnDust13

P(NIT) from HNO3 uptake on dust aerosols kg N/s

ProdSO2fromDMS14 Total P(SO2) from DMS kg S/s
ProdSO2fromDMSandNO314 P(SO2) from DMS + NO3 kg S/s
ProdSO2fromDMSandOH14 P(SO2) from DMS + OH kg S/s
ProdSO2fromOxidationOnDust13 P(SO2) from DMS+OH on dust aerosols kg S/s
ProdSO4fromGasPhase14 P(SO4) in gas phase kg S/s
ProdSO4fromH2O2inCloud15 P(SO4) from aqueous oxidation of H2O2 in clouds kg S/s
ProdSO4fromHOBrinCloud16 P(SO4) from aqueous oxidation of HOBr in clouds kg S/s
ProdSO4fromO2inCloudMetal15 P(SO4) from aqueous oxidation of O2 from metals in

cloud
kg S/s

ProdSO4fromO3inCloud15 P(SO4) from aqueous oxidation of O3 in clouds kg S/s
ProdSO4fromO3inSeaSalt15 P(SO4) from O3 in sea salt kg S/s
ProdSO4fromO3s15 P(SO4) from aqueous phase SO3– loss by OH kg S/s
ProdSO4fromSRHOBR16 P(SO4) from sulfur production rate of HOBr + O3 kg S/s
ProdSO4fromSRO315 P(SO4) from sulfur production rate of O3 kg S/s
ProdSO4fromUptakeOfH2SO4g13 P(SO4) from H2SO4 uptake on dust aerosols kg S/s

15 Defined for aerosol-only and fullchem simulations.
16 Only defined for fullchem simulations.
14 Only defined for the aerosol-only simulation.
13 Only defined for fullchem simulation with aciduptake on dust.

22.2. Diagnostic collections 135

GCHP, Release 14.3.0

Notes for the ProdLoss collection

22.2.23 RadioNuclide

The RadioNuclide collection contains diagnostic outputs for radionuclide species in the GEOS-Chem TransportTracers
simulation.

Note: Emissions of Rn222, Be7, and Be10 species are archived to diagnostic output by HEMCO diagnostics, and are
thus not contained in this collection.

Sample definition section for HISTORY.rc

RadioNuclide.template: '%y4%m2%d2_%h2%n2z.nc4',
RadioNuclide.format: 'CFIO',
RadioNuclide.frequency: 00000100 000000
RadioNuclide.duration: 00000100 000000
RadioNuclide.mode: 'time-averaged'
RadioNuclide.fields: 'PbFromRnDecay ',

'RadDecay_Rn222 ',
'RadDecay_Pb210 ',
'RadDecay_Pb210s',
'RadDecay_Be7 ',
'RadDecay_Be7s ',
'RadDecay_Be10 ',
'RadDecay_Be10s ',

::

List of diagnostic fields in the RadioNuclide collection

Diagnostic field Description Units
PbFromRnDecay Pb210 created from radioactive decay kg/s
RadDecay_Be7 Loss of Be7 due to radioactive decay kg/s
RadDecay_Be7s Loss of Be7 (produced in the stratosphere) due to radioactive decay kg/s
RadDecay_Be10 Loss of Be10 due to radioactive decay kg/s
RadDecay_Be10s Loss of Be10 (produced in the stratosphere) due to radioactive decay kg/s
RadDecay_Pb210 Loss of Pb210 due to radioactive decay kg/s
RadDecay_Pb210s Loss of Pb210 (produced in the stratosphere) due to radioactive decay kg/s
RadDecay_Rn222 Loss of Rn222 due to readioactive decay kg/s

22.2.24 Restart

The Restart diagnostic collection contains fields for saving out to the GEOS-Chem restart file. This type of diagnostic
output is used in all GEOS-Chem simulations; therefore, we have listed Restart first in the HISTORY.rc files that ship
with each GEOS-Chem run directory.

Note: The restart file will be created in the Restarts/ subdirectory of the run directory, not in OutputDir/.

Sample definition section for HISTORY.rc

136 Chapter 22. Archive output with the History diagnostics

https://hemco.readthedocs.io/en/latesthco-ref-guide/diagnostics.html

GCHP, Release 14.3.0

Restart.filename: './GEOSChem.Restart.%y4%m2%d2_%h2%n2z.nc4',
Restart.frequency: 'End',
Restart.duration: 'End',
Restart.mode: 'instantaneous'
Restart.fields: 'SpeciesRst_?ALL? ',

'Chem_H2O2AfterChem ',
'Chem_SO2AfterChem ',
'Chem_DryDepNitrogen',
'Chem_WetDepNitrogen',
'Chem_KPPHvalue ',
'Met_DELPDRY ',
'Met_PS1WET ',
'Met_PS1DRY ',
'Met_SPHU1 ',
'Met_TMPU1 ',

::

List of diagnostic fields in the Restart collection

Diagnostic field Description Units
Chm_DryDepNitrogenDry deposited nitrogen molec/cm2/s
Chm_H2O2AfterChemConcentration of H2O2 after sulfate chemistry v/v
Chm_KPPHvalue H-value for Rosenbrock solver unitless
Chm_SO2AfterChemConcentration of SO2 after sulfate chemistry v/v
Chm_StatePSC Polar stratospheric cloud type count
Chm_WetDepNitrogenWet deposited nitrogen molec/cm2/s
Met_DELPDRY Delta-pressure across grid box (dry air) hPa
Met_PS1WET Wet surface pressure at dt start hPa
Met_PS1DRY Dry surface pressure at dt start hPa
Met_SPHU1 Instantaneous specific humidity at time=T g kg-1
Met_TMPU1 Instantaneous temperature at time=T K
SpeciesRst_?ALL? Instantaneous chemical species concentrations for use in starting subsequent

GEOS-Chem simulations
mol/mol
dry air

22.2.25 RRTMG

The RRTMG collection contains radiative flux diagnostics computed by the RRTMG radiative transfer model. You
can leave this collection disabled unless your simulation uses RRTMG.

Note: You may compute RRTMG diagnostic quantities at up to 3 wavelengths (WL1, WL2, WL3). Specify the wave-
lengths in this menu of the geoschem_config.yml file:

rrtmg_rad_transfer_model:
activate: true
aod_wavelengths_in_nm:
- 550 700 1000
... etc ...

GEOS-Chem will replace the tokens WL1, WL2, WL3 in diagnostic field names with the corresponding wavelength. For
example:

22.2. Diagnostic collections 137

GCHP, Release 14.3.0

RadAODWL1_SU
RadAODWL2_SU
RadAODWL3_SU

will be saved to the GEOSChem.RRTMG.YYYYMMDD_hhmmz.nc4 file(s) under these names:

RadAOD550nm_SU
RadAOD700nm_SU
RadAOD1000nm_SU

Sample definition section for HISTORY.rc

#==
%%%%% THE RRTMG COLLECTION %%%%%
#
Outputs for different species from the RRTMG radiative transfer model:
(See http://wiki.geos-chem.org/Coupling_GEOS-Chem_with_RRTMG)
#
0=BA (Baseline) 1=O3 (Ozone) 2=ME (Methane)
3=SU (Sulfate) 4=NI (Nitrate) 5=AM (Ammonium)
6=BC (Black carbon) 7=OA (Organic aerosol) 8=SS (Sea Salt)
9=DU (Mineral dust) 10=PM (All part. matter) 12=ST (Strat aer., UCX only)
#
NOTES:
(1) Only request diagnostics you need to reduce the overall run time.
(2) The ?RRTMG? wildcard includes all output except ST (strat aerosols).
However, if ST is included explicitly for one diagnostic then it
will be included for all others that use the wildcard.
(3) Only enable ST if running with UCX.
(4) Optics diagnostics have a reduced set of output species (no BASE, O3, ME)
#==
RRTMG.template: %y4%m2%d2_%h2%n2z.nc4',
RRTMG.frequency: 00000100 000000
RRTMG.duration: 00000100 000000
RRTMG.mode: time-averaged'
RRTMG.fields: 'RadClrSkyLWSurf_?RRTMG?',

'RadAllSkyLWSurf_?RRTMG?',
'RadClrSkySWSurf_?RRTMG?',
'RadAllSkySWSurf_?RRTMG?',
'RadClrSkyLWTOA_?RRTMG? ',
'RadAllSkyLWTOA_?RRTMG? ',
'RadClrSkySWTOA_?RRTMG? ',
'RadAllSkySWTOA_?RRTMG? ',
'RadAODWL1_?RRTMG? ',
'RadAsymWL1_?RRTMG? ',

::

List of diagnostic fields in the RRTMG collection

138 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Diagnostic field Description Units Wildcard
DynHeating Dynamic heating rate in baseline simulation K/day ?RRTMG?
DtRad Temperature change due to radiative heating K ?RRTMG?
RadAODWL1_<name|wc> Aerosol optical depth computed @ WL1 1 ?RRTMG?
RadAODWL2_<name|wc> Aerosol optical depth computed @ WL2 1 ?RRTMG?
RadAODWL3_<name|wc> Aerosol optical depth computed @ WL3 1 ?RRTMG?
RadAsymWL1_<name|wc> Asymmetry parameter computed @ WL1 1 ?RRTMG?
RadAsymWL2_<name|wc> Asymmetry parameter computed @ WL2 1 ?RRTMG?
RadAsymWL3_<name|wc> Asymmetry parameter computed @ WL3 1 ?RRTMG?
RadAllSkyLWSurf_<name|wc> All-sky longwave radiation at the surface W/m2 ?RRTMG?
RadAllSkyLWTOA_<name|wc> All-sky longwave radiation at top-of-atmosphere W/m2 ?RRTMG?
RadAllSkyLWTrop_<name|wc> All-sky longwave radiation at the tropopause W/m2 ?RRTMG?
RadAllSkySWSurf_<name|wc> All-sky shortwave radiation at the surface W/m2 ?RRTMG?
RadAllSkySWTOA_<name|wc> All-sky shortwave radiation at top-of-atmosphere W/m2 ?RRTMG?
RadAllSkySWTrop_<name|wc> All-sky shortwave radiation at the tropopause W/m2 ?RRTMG?
RadClrSkyLWSurf_<name|wc> Clear-sky longwave radiation at the surface W/m2 ?RRTMG?
RadClrSkyLWTOA_<name|wc> Clear-sky longwave radiation at top-of-atmosphere W/m2 ?RRTMG?
RadClrSkyLWTrop_<name|wc> Clear-sky longwave radiation at the tropopause W/m2 ?RRTMG?
RadClrSkySWSurf_<name|wc> Clear-sky shortwave radiation at the surface W/m2 ?RRTMG?
RadClrSkySWTOA_<name|wc> Clear-sky shortwave radiation at top-of-atmosphere W/m2 ?RRTMG?
RadClrSkySWTrop_<name|wc> Clear-sky shortwave radiation at the tropopause W/m2 ?RRTMG?
RadSSAWL1_<name|wc> Single-scattering albedo computed @ WL1 1 ?RRTMG?
RadSSAWL2_<name|wc> Single-scattering albedo computed @ WL2 1 ?RRTMG?
RadSSAWL3_<name|wc> Single-scattering albedo computed @ WL3 1 ?RRTMG?

22.2.26 RxnConst

The RxnConst collection contains reaction rate constants from the KPP solver.

It is best to list individual reactions to avoid using too much memory.
Reactions should be listed as "RxnConst_EQnnn", where nnn is the reaction
index as listed in KPP/fullchem/gckpp_Monitor.F90 (pad zeroes as needed).
#
The units of reaction rate constants vary according to the number of reactants
in the reaction.
#
Available for the fullchem simulations.
RxnConst.template: '%y4%m2%d2_%h2%n2z.nc4',
RxnConst.frequency: ${RUNDIR_HIST_TIME_AVG_FREQ}
RxnConst.duration: ${RUNDIR_HIST_TIME_AVG_DUR}
RxnConst.mode: 'time-averaged'
RxnConst.fields: 'RxnConst_EQ001 ',

'RxnConst_EQ002 ',
::

List of diagnostic fields in the RxnRate collection

Units are

Diagnostic field Description Units Wildcard
RxnConst_EQnnn17 Rate constant for KPP reaction nnn 18 ?RXN?

22.2. Diagnostic collections 139

GCHP, Release 14.3.0

Notes for the RxnRates collection

22.2.27 RxnRates

The RxnRates collection contains reaction rates *aka equation rates) from the chemical mechanism (as computed by
the KPP-generated solver code). For example, in the case of the NO + O3 → NO2 + O2 reaction the returned quantity
is k[NO][O3] in molec/cm3/s.

Here is a sample definition section for the RxnRates collection.

Sample definition section for HISTORY.rc

#
It is best to list individual reactions to avoid using too much memory.
Reactions should be listed as "RxnRate_EQnnn", where nnn is the reaction
index as listed in KPP/fullchem/gckpp_Monitor.F90,
KPP/carbon/gckpp_Monitor.F90, and KPP/Hg/gckpp_monitor.F90
(pad zeroes as needed)
#
RxnRates.template: '%y4%m2%d2_%h2%n2z.nc4',
RxnRates.frequency: 00000000 010000
RxnRates.duration: 00000000 010000
RxnRates.mode: 'time-averaged'
RxnRates.fields: 'RxnRate_EQ001 ',

'RxnRate_EQ002 ',
::

List of diagnostic fields in the RxnRate collection

Diagnostic field Description Units Wildcard
RxnRate_EQnnn19 Rate for KPP reaction nnn molec/cm3/s ?RXN?

Notes for the RxnRates collection

22.2.28 SatDiagn

The SatDiagn collection contains diagnostic quantities that will be sampled within a specified local time range. This
is to mimic the overpass sampling times of sun-synchronus satellite instruments.

Tip: Set the the hours (local time) for the averaging interval with:

SatDiagn.hrrange: 11.98 15.02

Sample definition section for HISTORY.rc

17 See the gckpp_Monitor.F90 file to get a numbered list of reactions.
18 Units are { (cm3/molec)**(nreactants-1) }/s
19 See the gckpp_Monitor.F90 file to get a numbered list of reactions.

140 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

SatDiagn.template: '%y4%m2%d2_%h2%n2z.nc4',
SatDiagn.frequency: 00000001 000000
SatDiagn.duration: 00000100 000000
SatDiagn.hrrange: 11.98 15.02
SatDiagn.mode: 'time-averaged'
SatDiagn.fields: 'SatDiagnConc_O3 ',

'SatDiagnOH ',
'SatDiagnRH ',
'SatDiagnAirDen ',
'SatDiagnBoxHeight ',
'SatDiagnPEdge ',
'SatDiagnTROPP ',
'SatDiagnPBLHeight ',
'SatDiagnPBLTop ',
'SatDiagnTAir ',
'SatDiagnGWETROOT ',
'SatDiagnGWETTOP ',
'SatDiagnPARDR ',
'SatDiagnPARDF ',
'SatDiagnPRECTOT ',
'SatDiagnSLP ',
'SatDiagnSPHU ',
'SatDiagnTS ',
'SatDiagnPBLTOPL ',
'SatDiagnMODISLAI ',
'SatDiagnWetLossLS_ ',
'SatDiagnWetLossConv_ ',
'SatDiagnJval_ ',
'SatDiagnJvalO3O1D ',
'SatDiagnJvalO3O3P ',
'SatDiagnDryDep_ ',
'SatDiagnDryDepVel_ ',
'SatDiagnOHreactivity ',
'SatDiagnColEmis_ ',
'SatDiagnSurfFlux_ ',
'SatDiagnProd_?PRD? ',
'SatDiagnLoss_?LOS? ',
'SatDiagnRxnRate_EQnnn',

::

List of diagnostic fields in the SatDiagn collection

Diagnostic field Description Units Wildcards
SatDiagnAirDen Air density molec/cm3
SatDiagnBoxHeight Grid box height m
SatDiagnColEmis_<name|wc> Column emissions kg/m2/s ?ADV?
SatDiagnConc_<name|wc> Dry mixing ratio of species mol/mol ?ADV?
SatDiagnDryDep_<name|wc> Dry deposition flux of species molec/cm2/s ?DRY?
SatDiagnDryDepVel_<name|wc> Dry deposition velocity of species cm/s ?DRY?
SatDiagnGWETROOT Root zone soil moisture 1
SatDiagnGWETTOP Topsoil moisture (or 1

continues on next page

22.2. Diagnostic collections 141

GCHP, Release 14.3.0

Table 2 – continued from previous page
Diagnostic field Description Units Wildcards
SatDiagnJVal_<name|wc> Photolysis rate 1/s ?PHO?
SatDiagnJvalO3O1D Photolysis rate for O3 → O1D 1/s
SatDiagnJvalO3O3P Photolysis rate for O3 → O1D 1/s
SatDiagnLoss_<name|wc> Chemical loss of species or families molec/cm3/s ?LOS?
SatDiagnMODISLAI MODIS daily LAI m2/m2
SatDiagnOH OH number density molec/cm3
SatDiagnOHreactivity OH reactivity 1/s
SatDiagnPARDF Diffuse photosynthetically active radiation W/m2
SatDiagnPARDR Direct photosynthetically active radiation W/m2
SatDiagnPBLHeight PBL Height m
SatDiagnPBLTop PBL Top m
SatDiagnPBLTOPL PBL top height level
SatDiagnPRECTOT Total precipitation at surface mm/day
SatDiagnProd_<name|wc> Chemical production of species or families molec/cm3/s ?PRD?
SatDiagnRH Relative humidity %
SatDiagnRxnRate_EQnnn Rate for chemical reaction `nnn` molec/cm3/s ?RXN?
SatDiagnSLP Sea level pressure hPa
SatDiagnSPHU Specific humidity interpolated to current time g H2O/kg air
SatDiagnSurfFlux_<name|wc> Total surface fluxes (emis - drydep) from surface to top of PBL kg/m2/s ?ADV?
SatDiagnTAir Air temperature K
SatDiagnTROPP Tropopause pressure hPa
SatDiagnTS Surface temperature at 2m K
SatDiagnWetLossConv_<name|wc> Loss of soluble species in convective updrafts kg/s ?WET?
SatDiagnWetLossLS_<name|wc> Loss of soluble species in large-scale precipitation kg/s ?WET?

22.2.29 SatDiagnEdge

The SatDiagn collection contains diagnostic quantities (placed on level edges) that will be sampled within a specified
local time range. This is to mimic the overpass sampling times of sun-synchronus satellite instruments.

Tip: Set the the hours (local time) for the averaging interval with:

SatDiagn.hrrange: 11.98 15.02

Sample definition section for HISTORY.rc

SatDiagnEdge.template: '%y4%m2%d2_%h2%n2z.nc4',
SatDiagnEdge.frequency: 00000001 000000
SatDiagnEdge.duration: 00000100 000000
SatDiagnEdge.hrrange: 11.98 15.02
SatDiagnEdge.mode: 'time-averaged'
SatDiagnEdge.fields: 'SatDiagnConc_PEDGE',

::

List of diagnostic fields in the SatDiagnEdge collection

Diagnostic field Description Units
SatDiagnPEDGE Pressure at grid box edges hPa

142 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

22.2.30 SpeciesConc

The SpeciesConc diagnostic collection contains species concentrations.

Sample definition section for HISTORY.rc

SpeciesConc.template: '%y4%m2%d2_%h2%n2z.nc4',
SpeciesConc.format: 'CFIO',
SpeciesConc.frequency: 00000100 000000
SpeciesConc.duration: 00000100 000000
SpeciesConc.mode: 'time-averaged'
SpeciesConc.fields: 'SpeciesConcVV_?ALL?',

'SpeciesConcMND_?ALL?',
::

List of diagnostic fields in the SpeciesConc collection

Diagnostic field Description Units Wildcards
SpeciesConcMND_<name|wc> Species concentration molec/cm3 can be used with all wildcards
SpeciesConcVV_<name|wc> Species concentration mol/mol dry air can be used with all wildcards

22.2.31 StateChm

The ‘”StateChm ‘” collection contains quantities from State_Chm, the Chemistry State object (other than the species
concentrations, which are stored in the SpeciesConc collection).

Sample definition section for HISTORY.rc

StateChm.template: '%y4%m2%d2_%h2%n2z.nc4',
StateChm.frequency: 00000100 000000
StateChm.duration: 00000100 000000
StateChm.mode: 'time-averaged'
StateChm.fields: 'Chem_phSav ', 'GIGCchem',

'Chem_HplusSav ', 'GIGCchem',
'Chem_WaterSav ', 'GIGCchem',
'Chem_SulRatSav ', 'GIGCchem',
'Chem_NaRatSav ', 'GIGCchem',
'Chem_AcidPurSav ', 'GIGCchem',
'Chem_BiSulSav ', 'GIGCchem',
'Chem_pHCloud ', 'GIGCchem',
'Chem_SSAlk', ', 'GIGCchem',
'Chem_HSO3AQ ', 'GIGCchem',
'Chem_SO3AQ ', 'GIGCchem',
'Chem_fupdateHOBr', 'GIGCchem',

::

List of diagnostic fields in the StateChm collection

22.2. Diagnostic collections 143

GCHP, Release 14.3.0

Diagnostic field Description Units
Chm_AcidPurSav ISORROPIA acidpur concentration M
Chm_BiSulSav ISORROPIA bisulfate general acid concentration M
Chm_fupdateHOBr Correction factor for HOBr removal by SO2 grid box (wet air) mol/L
Chm_HplusSav ISORROPIA H+ concentration M
Chm_HSO3AQ Cloud bisulfite concentration mol/L
Chm_NaRatSav ISORROPIA Na+ concentration M
Chm_phCloud Cloud pH 1
Chm_phSav ISORROPIA aerosol pH 1
Chm_SO3AQ Cloud sulfite concentration mol/L
Chm_SulRatSav ISORROPIA sulfate concentration M
Chm_SSalk Sea salt alkalinity
Chm_WaterSav ISORROPIA aerosol water 𝜇𝑔/𝑚3

22.2.32 StateMet

The StateMet collection contains met fields and other derived quantities that are carried in the State_Met object.

Sample definition section for HISTORY.rc

StateMet.template: '%y4%m2%d2_%h2%n2z.nc4',
StateMet.frequency: 00000100 000000
StateMet.duration: 00000100 000000
StateMet.mode: 'time-averaged'
StateMet.fields: 'Met_AD ',

'Met_AIRDEN ',
'Met_AIRVOL ',
'Met_ALBD ',
'Met_AREAM2 ',
'Met_AVGW ',
'Met_BXHEIGHT ',
'Met_ChemGridLev',
'Met_CLDF ',
'Met_CLDFRC ',
'Met_CLDTOPS ',
'Met_DELP ',
'Met_DQRCU ',
'Met_DQRLSAN ',
'Met_DTRAIN ',
'Met_EFLUX ',
'Met_FRCLND ',
'Met_FRLAKE ',
'Met_FRLAND ',
'Met_FRLANDIC ',
'Met_FROCEAN ',
'Met_FRSEAICE ',
'Met_FRSNO ',
'Met_GWETROOT ',
'Met_GWETTOP ',
'Met_HFLUX ',
'Met_LAI ',

(continues on next page)

144 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

(continued from previous page)

'Met_LWI ',
'Met_PARDR ',
'Met_PARDF ',
'Met_PBLTOPL ',
'Met_PBLH ',
'Met_PHIS ',
'Met_PMID ',
'Met_PMIDDRY ',
'Met_PRECANV ',
'Met_PRECCON ',
'Met_PRECLSC ',
'Met_PRECTOT ',
'Met_PS1DRY ',
'Met_PS1WET ',
'Met_PS2DRY ',
'Met_PS2WET ',
'Met_PSC2WET ',
'Met_PSC2DRY ',
'Met_QI ',
'Met_QL ',
'Met_OMEGA ',
'Met_OPTD ',
'Met_REEVAPCN ',
'Met_REEVAPLS ',
'Met_SLP ',
'Met_SNODP ',
'Met_SNOMAS ',
'Met_SPHU ',
'Met_SPHU1 ',
'Met_SPHU2 ',
'Met_SUNCOS ',
'Met_SUNCOSmid ',
'Met_SWGDN ',
'Met_T ',
'Met_TAUCLI ',
'Met_TAUCLW ',
'Met_THETA ',
'Met_TMPU1 ',
'Met_TMPU2 ',
'Met_TO3 ',
'Met_TropHt ',
'Met_TropLev ',
'Met_TropP ',
'Met_TS ',
'Met_TSKIN ',
'Met_TV ',
'Met_U ',
'Met_U10M ',
'Met_USTAR ',
'Met_UVALBEDO ',
'Met_V ',
'Met_V10M ',

(continues on next page)

22.2. Diagnostic collections 145

GCHP, Release 14.3.0

(continued from previous page)

'Met_Z0 ',
::

List of diagnostic fields in the StateMet collection

Diagnostic field Description Units
Met_AD Dry air mass kg
Met_AIRDEN Dry air density kg/m3
Met_AIRVOL Grid box volume, dry air m3
Met_ALBD Surface albedo 1
Met_AREAM2 Grid box area m2
Met_AVGW Water vapor volume mixing ratio vol H2O/vol dry air
Met_BXHEIGHT Grid box height m
Met_ChemGridLev Chemistry grid level 1
Met_CLDF 3-D cloud fraction
Met_CLDFRC Column cloud fraction 1
Met_CLDTOPS Maximum cloud top height 1
Met_DELP Delta-pressure between top and bottom edges of grid box (wet air) hPa
Met_DQRCU Convective precipitation production rate (dry air) kg/kg/s
Met_DTRAIN Detrainment flux kg/m2/s
Met_EFLUX Latent heat flux W/m2
Met_FRCLND Olson land fraction 1
Met_FRLAKE Fraction of grid box covered by lakes 1
Met_FRLAND Fraction of grid box covered by land 1
Met_FRLANDIC Fraction of grid box covered by land ice 1
Met_FROCEAN Fraction of grid box covered by ocean 1
Met_FRSEAICE Fraction of grid box covered by sea ice 1
Met_FRSNO Fraction of grid box covered by snow 1
Met_GWETROOT Root soil moisture 1
Met_GWETTOP Topsoil moisture 1
Met_HFLUX Sensible heat flux W/m2
Met_LAI Leaf area index from met field archive m2/m2
Met_LWI Land-water-ice indices 1
Met_PARDF Diffuse photosynthetically active radiation W/m2
Met_PARDR Diffuse photosynthetically active radiation W/m2
Met_PBLTOPL PBL top layer 1
Met_PBLH PBL height m
Met_PHIS Surface geopotential height m
Met_PMID Pressure at midpoint of model layers, defined as arithmetic average of edge pressures (wet air) hPa
Met_PMIDDRY Pressure at midpoint of model layers, defined as arithmetic average of edge pressures (dry air) hPa
Met_PRECANV Anvil precipitation (at surface) mm/day
Met_PRECCON Convective precipitation (at surface) mm/day
Met_PRECLSC Large-scale precipitation (at surface) mm/day
Met_PRECTOT Total precipitation (at surface) mm/day
Met_PS1DRY Instantaneous surface pressure at start of 3-hr met field interval (dry air) hPa
Met_PS2DRY Instantaneous surface pressure at end of 3-hr met field interval (dry air) hPa
Met_PSC2DRY Surface pressure interpolated to current time (dry air) hPa
Met_PS1WET Instantaneous surface pressure at start of 3-hr met field interval (wet air) hPa
Met_PS2WET Instantaneous surface pressure at end of 3-hr met field interval (wet air) hPa
Met_PSC2WET Surface pressure interpolated to current time (wet air) hPa
Met_QI Ice mixing ratio (dry air) kg/kg dry air

continues on next page

146 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Table 3 – continued from previous page
Diagnostic field Description Units
Met_QL Liquid water mixing ratio (dry air) kg/kg dry air
Met_OMEGA Updraft velocity Pa/s
Met_OPTD Visible optical depth 1
Met_REEVAPCN Evaporation of convective precipitation (dry air) kg/kg/s
Met_REEVAPLS Evaporation of large-scale + anvil precipitation (dry air) kg/kg/s
Met_SLP Sea level pressure hPa
Met_SNODP Snow depth m
Met_SNOMAS Snow mass kg/m2
Met_SPHU1 Instantaneous specific humidity at start of 3 hr met field interval (wet air) kg/kg
Met_SPHU2 Instantaneous specific humidity at end of 3-hr met field interval (wet air) kg/kg
Met_SPHU Specific humidity interpolated to current time (wet air) g H2O/kg air
Met_SUNCOS Cosine of solar zenith angle at current time 1
Met_SUNCOSMID Cosine of solar zenith angle at midpoint of chemistry timestep 1
Met_SWGDN Incident shortwave radiation at ground W/m2
Met_TAUCLI Visible optical depth of ice clouds 1
Met_TAUCLW Visible optical depth of water clouds 1
Met_THETA Potential temperature K
Met_TMPU1 Instantaneous temperature at start of 3-hr met field interval K
Met_TMPU2 Instantaneous temperature at end of 3-hr met field interval K
Met_T Temperature interpolated to current time K
Met_TO3 Total overhead ozone column Dobsons
Met_TropHt Tropopause height u
Met_TropLev Tropopause level 1
Met_TROPP Tropopause pressure hPa
Met_TS Surface temperature K
Met_TSKIN Surface skin temperature K
Met_U East-west ccomponent of wind m/s
Met_U10M East-west component of wind at 10 m height above surface m/s
Met_USTAR Friction velocity m/s
Met_UVALBEDO Ultraviolet surface albedo 1
Met_V North-south ccomponent of wind m/s
Met_V10M North-south component of wind at 10 m height above surface m/s
Met_Z0 Surface roughness height m
FracOfTimeInTrop Fraction of time spent in the troposphere 1

22.2.33 StratBM

The StratBM collection contains diagnostic fields for GEOS-Chem 10-year stratospheric benchmark simulations. Un-
less you are involved with benchmarking GEOS-Chem, you may leave this collection deactivated.

Sample definition section for the StratBM collection

StratBM.template: '%y4%m2%d2_%h2%n2z.nc4',
StratBM.frequency: 00000000 010000
StratBM.duration: 00000001 000000
StratBM.mode: 'time-averaged'
StratBM.fields: 'SpeciesConcVV_NO2 ',

'SpeciesConcVV_O3 ',
'SpeciesConcVV_ClO ',
'Met_PSC2WET ',

(continues on next page)

22.2. Diagnostic collections 147

GCHP, Release 14.3.0

(continued from previous page)

'Met_BXHEIGHT ',
'Met_AIRDEN ',
'Met_AD ',

::

List of diagnostic fields in the StateMet collection

Diagnostic field Description Units
Met_AD Dry air mass kg
Met_AIRDEN Dry air density kg/m3
Met_BXHEIGHT Grid box height m
Met_PSC2WET Surface pressure interpolated to current time (wet air) hPa
SpeciesConcVV_ClO ClO concentration mol/mol dry air
SpeciesConcVV_NO2 NO2 concentration mol/mol dry air
SpeciesConcVV_O3 O3 concentration mol/mol dry air

22.2.34 Tomas

The TOMAS collection contains diagnostic fields for fullchem simulations with TOMAS aerosol microphysics.

Tomas.template: '%y4%m2%d2_%h2%n2z.nc4',
Tomas.format: 'CFIO',
Tomas.timestampStart: .true.
Tomas.monthly: 0
Tomas.frequency: 010000
Tomas.duration: 010000
Tomas.mode: 'time-averaged'
Tomas.fields: 'TomasH2SO4 ',

'TomasH2SO4mass_?TOMASBIN? ',
#--
NOTE: for GEOS-Chem Classic you can use the
?TOMASBIN? wildcard. For GCHP you will need
to list each diagnostic field individually
such as is shown below:
#'TomasH2SO4mass_bin01 ',
#'TomasH2SO4mass_bin02 ',
#'TomasH2SO4mass_bin03 ',
#'TomasH2SO4mass_bin04 ',
#'TomasH2SO4mass_bin05 ',
#'TomasH2SO4mass_bin06 ',
#'TomasH2SO4mass_bin07 ',
#'TomasH2SO4mass_bin08 ',
#'TomasH2SO4mass_bin09 ',
#'TomasH2SO4mass_bin10 ',
#'TomasH2SO4mass_bin11 ',
#'TomasH2SO4mass_bin12 ',
#'TomasH2SO4mass_bin13 ',
#'TomasH2SO4mass_bin14 ',
#'TomasH2SO4mass_bin15 ',
#--

(continues on next page)

148 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

(continued from previous page)

'TomasH2SO4number_?TOMASBIN? ',
'TomasCOAG ',
'TomasCOAGmass_?TOMASBIN ',
'TomasCOAGnumber_?TOMASBIN? ',
'TomasNUCL ',
'TomasNUCRATEFN ',
'TomasNUCLmass_?TOMASBIN? ',
'TomasNUCLnumber_?TOMASBIN? ',
'TomasNUCRATEnumber_?TOMASBIN? ',
'TomasAQOX ',
'TomasAQOXmass_?TOMASBIN? ',
'TomasAQOXnumber_?TOMASBIN? ',
'TomasMNFIX ',
'TomasMNFIXmass_?TOMASBIN? ',
'TomasMNFIXnumber_?TOMASBIN? ',
'TomasMNFIXh2so4mass_?TOMASBIN? ',
'TomasMNFIXh2so4number_?TOMASBIN? ',
'TomasMNFIXcoagmass_?TOMASBIN? ',
'TomasMNFIXcoagnumber_?TOMASBIN? ',
'TomasMNFIXaqoxmass_?TOMASBIN? ',
'TomasMNFIXaqoxnumber_?TOMASBIN? ',
'TomasMNFIXezwat1number_?TOMASBIN?',
'TomasMNFIXezwat2mass_?TOMASBIN? ',
'TomasMNFIXezwat2number_?TOMASBIN?',
'TomasMNFIXezwat3mass_?TOMASBIN? ',
'TomasMNFIXezwat3number_?TOMASBIN?',
'TomasMNFIXcheck1mass_?TOMASBIN? ',
'TomasMNFIXcheck1number_?TOMASBIN?',
'TomasMNFIXcheck2mass_?TOMASBIN? ',
'TomasMNFIXcheck2number_?TOMASBIN?',
'TomasMNFIXcheck3mass_?TOMASBIN? ',
'TomasMNFIXcheck3number_?TOMASBIN?',
'TomasSOA ',
'TomasSOAmass_?TOMASBIN? ',
'TomasSOAnumber_?TOMASBIN? ',

::

List of diagnostic fields for the Tomas collection

Diagnostic field Description Units Wildcard
TomasAQOX Tomas aqueous oxidation

rate
1 20

TomasAQOX-
mass_<name|wc>

TomasAQOX mass rate kg/kg/s Page 151, 20

TomasAQOXnum-
ber_<name|wc>

TomasAQOX number rate #/kg/s Page 151, 20

TomasCOAG Tomas coagulation rate 1 Page 151, 20

TomasCOAG-
mass_<name|wc>

TOMASCOAG mass rate kg/kg/s Page 151, 20

TomasCOAGnum-
ber_<name|wc>

TomasCOAG number rate #/kg/s Page 151, 20

continues on next page

22.2. Diagnostic collections 149

GCHP, Release 14.3.0

Table 4 – continued from previous page
Diagnostic field Description Units Wildcard
TomasH2SO4 Tomas condensation rate 1 Page 151, 20

TomasH2SO4mass_<name|wc>TomasH2SO4 mass rate kg/kg/s Page 151, 20

TomasH2SO4number_<name|wc>TomasH2SO4 number rate #/kg/s Page 151, 20

TomasMNFIX Tomas error rate 1 Page 151, 20

TomasMNFIX-
mass_<name|wc>

TomasMNFIX mass rate kg/kg/s Page 151, 20

TomasMNFIXnum-
ber_<name|wc>

TomasMNFIX number
rate

#/kg/s Page 151, 20

TomasMNFIXaqox-
mass_<name|wc>

TOMASMNFIXAQOX
mass rate

kg/kg/s Page 151, 20

TomasMNFIXaqoxnum-
ber_ <name|wc>

TOMASMNFIXAQOX
number rate

#/kg/s Page 151, 20

TomasMNFIXcoag-
mass_<name|wc>

TomasMNFIXCOAG
mass rate

kg/kg/s Page 151, 20

TomasMNFIXcoagnum-
ber_<name|wc>

TomasMNFIXCOAG
number rate

#/kg/s Page 151, 20

TomasMNFIX-
check1mass_<name|wc>

TOMASMNFIX-
CHECK1 mass rate

kg/kg/s Page 151, 20

TomasMNFIX-
check1number_<name|wc>

TOMASMNFIX-
CHECK1 number rate

#/kg/s Page 151, 20

TomasMNFIX-
check2mass_<name|wc>

TOMASMNFIX-
CHECK2 mass rate

kg/kg/s Page 151, 20

TomasMNFIX-
check2number_<name|wc>

TOMASMNFIX-
CHECK2 number rate

#/kg/s Page 151, 20

TomasMNFIX-
check3mass_<name|wc>

TOMASMNFIX-
CHECK3 mass rate

kg/kg/s Page 151, 20

TomasMNFIX-
check3number_<name|wc>

TOMASMNFIX-
CHECK3 number rate

#/kg/s Page 151, 20

TomasMNFIX-
ezwat1mass_<name|wc>

TOMASMNFIX-
EZWAT1 mass rate

kg/kg/s Page 151, 20

TomasMNFIX-
ezwat1number_<name|wc>

TOMASMNFIX-
EZWAT1 number rate

#/kg/s Page 151, 20

TomasMNFIX-
ezwat2mass_<name|wc>

TOMASMNFIX-
EZWAT2 mass rate

kg/kg/s Page 151, 20

TomasMNFIX-
ezwat2number_<name|wc>

TOMASMNFIX-
EZWAT2 number rate

#/kg/s Page 151, 20

TomasMNFIX-
ezwat3mass_<name|wc>

TOMASMNFIX-
EZWAT3 mass rate

kg/kg/s Page 151, 20

TomasMNFIX-
ezwat3number_<name|wc>

TOMASMNFIX-
EZWAT3 number rate

#/kg/s Page 151, 20

TomasMN-
FIXh2so4mass_<name|wc>

TomasMNFIXH2SO4
mass rate

kg/kg/s Page 151, 20

TomasMN-
FIXh2so4number_<name|wc>

TomasMNFIXH2SO4
number rate

#/kg/s Page 151, 20

TomasNUCL Tomas nucleation rate 1 Page 151, 20

TomasNU-
CLmass_<name|wc>

TomasNUCL mass rate kg/kg/s Page 151, 20

TomasNUCLnum-
ber_<name|wc>

TomasNUCL number rate #/kg/s Page 151, 20

TomasSOA TomasSOA rate 1 Page 151, 20

continues on next page

150 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

Table 4 – continued from previous page
Diagnostic field Description Units Wildcard
TomasSOA-
mass_<name|wc>

TomasSOA mass rate kg/kg/s Page 151, 20

TomasSOAnum-
ber_<name|wc>

TomasSOA number rate #/kg/s 20

Notes for the Tomas collection

22.2.35 UVFlux

The UVFlux diagnostic contains diffuse, direct, and net UV fluxes at each of the photolysis wavelength bins.

Sample definition section for HISTORY.rc

UVFlux.template: '%y4%m2%d2_%h2%n2z.nc4',
UVFlux.frequency: 00000100 000000
UVFlux.duration: 00000100 000000
UVFlux.mode: 'time-averaged'
UVFlux.template: 'UVFluxDiffuse_?UVFLX?',

'UVFluxDirect_?UVFLX? ',
'UVFluxNet_?UVFLX? ',

::

List of diagnostic fields in the UvFlux collection

Diagnostic field Description Units Wildcards
UVFluxDiffuse_<name|wc> Diffuse UV flux in wavelength bin W/m2 ?UVFLX?
UVFluxDirect_<name|wc> Direct UV flux in wavelength bin W/m2 ?UVFLX?
UVFluxNet_<name|wc> Net UV flux in wavelength bin W/m2 ?UVFLX?

22.2.36 WetLossConv

The WetLossConv collection contains diagnostics fluxes of soluble species lost to wet scavenging in convective up-
drafts.

Sample definition section for HISTORY.rc

WetLossConv.template: '%y4%m2%d2_%h2%n2z.nc4',
WetLossConv.frequency: 00000100 000000
WetLossConv.duration: 00000100 000000
WetLossConv.mode: 'time-averaged'
WetLossConv.fields: 'WetLossConv_?WET? ',

'WetLossConvFrac_?WET?',
::

List of diagnostic fields in the WetLossConv collection
20 This diagnostic field can use the ?TOMASBIN? wildcard (for GEOS-Chem Classic only).

22.2. Diagnostic collections 151

GCHP, Release 14.3.0

Diagnostic field Description Units Wild-
card

WetLossConv_<name|wc> Loss of soluble species scavenged by cloud updrafts in moist con-
vection

kg/s ?WET?

WetLossCon-
vFrac_<name|wc>

Fraction of species scavenged by cloud updrafts in moist convec-
tion

1 ?WET?

22.2.37 WetLossLS

The WetLossLS collection contains diagnostics fluxes of soluble species lost to rainout and washout in large-scale wet
deposition.

Sample definition section for HISTORY.rc

WetLossLS.template: '%y4%m2%d2_%h2%n2z.nc4',
WetLossLS.frequency: 00000100 000000
WetLossLS.duration: 00000100 000000
WetLossLS.mode: 'time-averaged'
WetLossLS.fields: 'WetLossLS_?WET?',

::

List of diagnostic fields in the WetLossLS collection

Diagnostic field Description Units | Wildcard
WetLossLS_<name|wc> Loss of soluble species in large-scale precipitation kg/s ?WET?

22.3 Adding new History diagnostics

To add your own diagnostics we recommend that you find a similar existing diagnostic and use its implementation as a
template. Most of the work is done in Headers/state_diag_mod.F90. Briefly, the following updates to that file are
essential for adding in your own netCDF diagnostics:

1. Declare diagnostic array at top of module.

2. Set diagnostic array pointer to null in Zero_State_Diag subroutine.

3. Create a section in Init_State_Diag subroutine to allocate and register the array.

4. Deallocate the diagnostic array in subroutine Cleanup_State_Diag.

5. Add an IF block for the diagnostic within subroutine Get_Metadata_State_Diag to define its metadata, mak-
ing sure to list the diagnostic name with all capital letters.

Good diagnostics to use as templates are SpeciesConcVV for 3-dimensional arrays that are for all species and
DryDepVel for 2-dimensional arrays that are for a subset of species. If your diagnostic is not per species then AODDust
is a good diagnostic to look at. Search the file Headers/state_diag_mod.F90 for any of these strings to find all
instances of code related to their implementation.

Note that information about the dimensions and species collection the diagnostic will include must be specified when
allocating the array in Init_State_Diag and in Get_Metadata_State_Diag. In the lattersubroutine the Rank is
the integer number of dimensions of the diagnostic (not including species) and the TagID string, if any, specifies the
species collection to output the diagnostic per. TagIDs are defined in subroutine Get_TagInfo. Each TagID string can

152 Chapter 22. Archive output with the History diagnostics

GCHP, Release 14.3.0

also be used as a wildcard within HISTORY.rc to simplify diagnostic name specification (for GEOS-Chem Classic
only).

Once you have implemented your diagnostic in Headers/state_diag_mod.F90, try adding it to HISTORY.rc and
running. You should get your diagnostic output in the netCDF output file as all zeros. The next step is to populate the
array with whatever value you want to output. You should do this by passing the State_Diag array to the location
where you want to set the values. Then write code to fill the array. A simple test of your understanding is to initially
set values to a constant other than zero and see if the output matches what you set the arrays to.

For additional help implementing your own GEOS-Chem diagnostics please contact the GEOS-Chem Support Team.

22.3. Adding new History diagnostics 153

GCHP, Release 14.3.0

154 Chapter 22. Archive output with the History diagnostics

CHAPTER

TWENTYTHREE

WORK WITH NETCDF FILES

On this page we provide some useful information about working with data files in netCDF format.

23.1 Useful tools

There are many free and open-source software packages readily available for visualizing and manipulating netCDF
files.

cdo

Climate Data Operators: Highly-optimized command-line tools for manipulating and analyzing netCDF
files. Contains features that are especially useful for Earth Science applications.

See: https://code.zmaw.de/projects/cdo

GCPy

GEOS-Chem Python toolkit: Python package for visualizing and analyzing GEOS-Chem output. Used for
creating the GEOS-Chem benchmark plots. Also contains some useful routines for creating single-panel plots
and multi-panel difference plots, as well as file regridding utilities.

See: https://gcpy.readthedocs.io

ncdump

Generates a text representation of netCDF data and can be used to quickly view the variables contained in a
netCDF file. ncdump is installed to the bin/ folder of your netCDF library distribution.

See: https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Ncdump.html

nco

netCDF operators: Highly-optimized command-line tools for manipulating and analyzing netCDF files.

See: http://nco.sourceforge.net

ncview

Visualization package for netCDF files. Ncview has limited features, but is great for a quick look at the contents
of netCDF files.

See: http://meteora.ucsd.edu/~pierce/ncview_home_page.html

netcdf-scripts

Our repository of useful netCDF utility scripts for GEOS-Chem.

See: https://github.com/geoschem/netcdf-scripts

155

https://code.zmaw.de/projects/cdo
https://gcpy.readthedocs.io
https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Ncdump.html
http://nco.sourceforge.net
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
https://github.com/geoschem/netcdf-scripts

GCHP, Release 14.3.0

Panoply

Java-based data viewer for netCDF files. This package offers an alternative to ncview. From our experience,
Panoply works nicely when installed on the desktop, but is slow to respond in the Linux environment.

See: https://www.giss.nasa.gov/tools/panoply/

xarray

Python package that lets you read the contents of a netCDF file into a data structure. The data can then be further
manipulated or converted to numpy or dask arrays for further procesing.

See: https://xarray.readthedocs.io

Some of the tools listed above, such as ncdump and ncview may come pre-installed on your system. Others may need
to be installed or loaded (e.g. via the module load command). Check with your system administrator or IT staff to
see what is available on your system.

23.2 Examine the contents of a netCDF file

An easy way to examine the contents of a netCDF file is to use ncdump as follows:

$ ncdump -ct GEOSChem.SpeciesConc.20190701_0000z.nc4

You will see output similar to this:

netcdf GEOSChem.SpeciesConc.20190701_0000z {
dimensions:

time = UNLIMITED ; // (1 currently)
lev = 72 ;
ilev = 73 ;
lat = 46 ;
lon = 72 ;
nb = 2 ;

variables:
double time(time) ;

time:long_name = "Time" ;
time:units = "minutes since 2019-07-01 00:00:00" ;
time:calendar = "gregorian" ;
time:axis = "T" ;

double lev(lev) ;
lev:long_name = "hybrid level at midpoints ((A/P0)+B)" ;
lev:units = "level" ;
lev:axis = "Z" ;
lev:positive = "up" ;
lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS" ;

double ilev(ilev) ;
ilev:long_name = "hybrid level at interfaces ((A/P0)+B)" ;
ilev:units = "level" ;
ilev:positive = "up" ;
ilev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
ilev:formula_terms = "a: hyai b: hybi p0: P0 ps: PS" ;

double lat_bnds(lat, nb) ;
lat_bnds:long_name = "Latitude bounds (CF-compliant)" ;

(continues on next page)

156 Chapter 23. Work with netCDF files

https://www.giss.nasa.gov/tools/panoply/
https://xarray.readthedocs.io

GCHP, Release 14.3.0

(continued from previous page)

lat_bnds:units = "degrees_north" ;
double lat(lat) ;

lat:long_name = "Latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;
lat:bounds = "lat_bnds" ;

double lon_bnds(lon, nb) ;
lon_bnds:long_name = "Longitude bounds (CF-compliant)" ;
lon_bnds:units = "degrees_east" ;

double lon(lon) ;
lon:long_name = "Longitude" ;
lon:units = "degrees_east" ;
lon:axis = "X" ;
lon:bounds = "lon_bnds" ;

double hyam(lev) ;
hyam:long_name = "hybrid A coefficient at layer midpoints" ;
hyam:units = "hPa" ;

double hybm(lev) ;
hybm:long_name = "hybrid B coefficient at layer midpoints" ;
hybm:units = "1" ;

double hyai(ilev) ;
hyai:long_name = "hybrid A coefficient at layer interfaces" ;
hyai:units = "hPa" ;

double hybi(ilev) ;
hybi:long_name = "hybrid B coefficient at layer interfaces" ;
hybi:units = "1" ;

double P0 ;
P0:long_name = "reference pressure" ;
P0:units = "hPa" ;

float AREA(lat, lon) ;
AREA:long_name = "Surface area" ;
AREA:units = "m2" ;

float SpeciesConcVV_RCOOH(time, lev, lat, lon) ;
SpeciesConc_RCOOH:long_name = "Dry mixing ratio of species RCOOH" ;
SpeciesConcVV_RCOOH:units = "mol mol-1 dry" ;
SpeciesConcVV_RCOOH:averaging_method = "time-averaged" ;

float SpeciesConcVV_O2(time, lev, lat, lon) ;
SpeciesConcVV_O2:long_name = "Dry mixing ratio of species O2" ;
SpeciesConcVV_O2:units = "mol mol-1 dry" ;
SpeciesConcVV_O2:averaging_method = "time-averaged" ;

float SpeciesConcVV_N2(time, lev, lat, lon) ;
SpeciesConcVV_N2:long_name = "Dry mixing ratio of species N2" ;
SpeciesConcVV_N2:units = "mol mol-1 dry" ;
SpeciesConcVV_N2:averaging_method = "time-averaged" ;

float SpeciesConcVV_H2(time, lev, lat, lon) ;
SpeciesConcVV_H2:long_name = "Dry mixing ratio of species H2" ;
SpeciesConcVV_H2:units = "mol mol-1 dry" ;
SpeciesConcVV_H2:averaging_method = "time-averaged" ;

float SpeciesConcVV_O(time, lev, lat, lon) ;
SpeciesConcVV_O:long_name = "Dry mixing ratio of species O" ;
SpeciesConcVVO:units = "mol mol-1 dry" ;

(continues on next page)

23.2. Examine the contents of a netCDF file 157

GCHP, Release 14.3.0

(continued from previous page)

... etc ...

// global attributes:
:title = "GEOS-Chem diagnostic collection: SpeciesConc" ;
:history = "" ;
:format = "not found" ;
:conventions = "COARDS" ;
:ProdDateTime = "" ;
:reference = "www.geos-chem.org; wiki.geos-chem.org" ;
:contact = "GEOS-Chem Support Team (geos-chem-support@g.harvard.edu)" ;
:simulation_start_date_and_time = "2019-07-01 00:00:00z" ;
:simulation_end_date_and_time = "2019-07-01 01:00:00z" ;

data:

time = "2019-07-01 00:30" ;

lev = 0.99250002413, 0.97749990013, 0.962499776, 0.947499955, 0.93250006,
0.91749991, 0.90249991, 0.88749996, 0.87249996, 0.85750006, 0.842500125,
0.82750016, 0.8100002, 0.78750002, 0.762499965, 0.737500105, 0.7125001,
0.6875001, 0.65625015, 0.6187502, 0.58125015, 0.5437501, 0.5062501,
0.4687501, 0.4312501, 0.3937501, 0.3562501, 0.31279158, 0.26647905,
0.2265135325, 0.192541016587707, 0.163661504087706, 0.139115, 0.11825,
0.10051436, 0.085439015, 0.07255786, 0.06149566, 0.05201591, 0.04390966,
0.03699271, 0.03108891, 0.02604911, 0.021761005, 0.01812435, 0.01505025,
0.01246015, 0.010284921, 0.008456392, 0.0069183215, 0.005631801,
0.004561686, 0.003676501, 0.002948321, 0.0023525905, 0.00186788,
0.00147565, 0.001159975, 0.00090728705, 0.0007059566, 0.0005462926,
0.0004204236, 0.0003217836, 0.00024493755, 0.000185422, 0.000139599,
0.00010452401, 7.7672515e-05, 5.679251e-05, 4.0142505e-05, 2.635e-05,
1.5e-05 ;

ilev = 1, 0.98500004826, 0.969999752, 0.9549998, 0.94000011, 0.92500001,
0.90999981, 0.89500001, 0.87999991, 0.86500001, 0.85000011, 0.83500014,
0.82000018, 0.80000022, 0.77499982, 0.75000011, 0.7250001, 0.7000001,
0.6750001, 0.6375002, 0.6000002, 0.5625001, 0.5250001, 0.4875001,
0.4500001, 0.4125001, 0.3750001, 0.3375001, 0.28808306, 0.24487504,
0.208152025, 0.176930008175413, 0.150393, 0.127837, 0.108663, 0.09236572,
0.07851231, 0.06660341, 0.05638791, 0.04764391, 0.04017541, 0.03381001,
0.02836781, 0.02373041, 0.0197916, 0.0164571, 0.0136434, 0.0112769,
0.009292942, 0.007619842, 0.006216801, 0.005046801, 0.004076571,
0.003276431, 0.002620211, 0.00208497, 0.00165079, 0.00130051, 0.00101944,
0.0007951341, 0.0006167791, 0.0004758061, 0.0003650411, 0.0002785261,
0.000211349, 0.000159495, 0.000119703, 8.934502e-05, 6.600001e-05,
4.758501e-05, 3.27e-05, 2e-05, 1e-05 ;

lat = -89, -86, -82, -78, -74, -70, -66, -62, -58, -54, -50, -46, -42, -38,
-34, -30, -26, -22, -18, -14, -10, -6, -2, 2, 6, 10, 14, 18, 22, 26, 30,
34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 89 ;

lon = -180, -175, -170, -165, -160, -155, -150, -145, -140, -135, -130,
-125, -120, -115, -110, -105, -100, -95, -90, -85, -80, -75, -70, -65,
-60, -55, -50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0, 5, 10, 15,

(continues on next page)

158 Chapter 23. Work with netCDF files

GCHP, Release 14.3.0

(continued from previous page)

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105,
110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175 ;

}

You can also use ncdump to display the data values for a given variable in the netCDF file. This command will display
the values in the SpeciesRst_O3 variable to the screen:

$ ncdump -v SpeciesConc_O3 GEOSChem.SpeciesConc.20190701_0000z.nc4 | less

Or you can redirect the output to a file:

$ ncdump -v SpeciesConc_O3 GEOSChem.SpeciesConc.20190701_0000z.nc4 > log

23.3 Read the contents of a netCDF file

23.3.1 Read data with Python

The easiest way to read a netCDF file is to use the xarray Python package.

#!/usr/bin/env python

Imports
import numpy as np
import xarray as xr

Read a restart file into an xarray Dataset object
ds = xr.open_dataset("GEOSChem.SpeciesConc.20190701_0000z.nc4")

Print the contents of the DataSet
print(ds)

Print units of data
print(f"\nUnits of SpeciesRst_O3: {ds['SpeciesConc_O3'].units}")

Print the sum, max, and min of the data
NOTE .values returns a numpy ndarray so that we can use
other numpy functions like np.sum() on the data
print(f"Sum of SpeciesRst_O3: {np.sum(ds['SpeciesConc_O3'].values)}")
print(f"Max of SpeciesRst_O3: {np.max(ds['SpeciesConc_O3'].values)}")
print(f"Min of SpeciesRst_O3: {np.min(ds['SpeciesConc_O3'].values)}")

This above script will print the following output:

<xarray.Dataset>
Dimensions: (ilev: 73, lat: 46, lev: 72, lon: 72, nb: 2, time: 1)
Coordinates:
* time (time) datetime64[ns] 2019-07-01T00:30:00
* lev (lev) float64 0.9925 0.9775 ... 2.635e-05 1.5e-05
* ilev (ilev) float64 1.0 0.985 0.97 ... 3.27e-05 2e-05 1e-05
* lat (lat) float64 -89.0 -86.0 -82.0 ... 82.0 86.0 89.0

(continues on next page)

23.3. Read the contents of a netCDF file 159

https://xarray.readthedocs.io

GCHP, Release 14.3.0

(continued from previous page)

* lon (lon) float64 -180.0 -175.0 -170.0 ... 170.0 175.0
Dimensions without coordinates: nb
Data variables: (12/315)

lat_bnds (lat, nb) float64 ...
lon_bnds (lon, nb) float64 ...
hyam (lev) float64 ...
hybm (lev) float64 ...
hyai (ilev) float64 ...
hybi (ilev) float64 ...
... ...
SpeciesConc_AONITA (time, lev, lat, lon) float32 ...
SpeciesConc_ALK4 (time, lev, lat, lon) float32 ...
SpeciesConc_ALD2 (time, lev, lat, lon) float32 ...
SpeciesConc_AERI (time, lev, lat, lon) float32 ...
SpeciesConc_ACTA (time, lev, lat, lon) float32 ...
SpeciesConc_ACET (time, lev, lat, lon) float32 ...

Attributes:
title: GEOS-Chem diagnostic collection: Species...
history:
format: not found
conventions: COARDS
ProdDateTime:
reference: www.geos-chem.org; wiki.geos-chem.org
contact: GEOS-Chem Support Team (geos-chem-suppor...
simulation_start_date_and_time: 2019-07-01 00:00:00z
simulation_end_date_and_time: 2019-07-01 01:00:00z

Units of SpeciesRst_O3: mol mol-1 dry
Sum of SpeciesRst_O3: 0.4052325189113617
Max of SpeciesRst_O3: 1.01212954177754e-05
Min of SpeciesRst_O3: 3.758645839013752e-09

23.3.2 Read data from multiple files in Python

The xarray package will also let you read data from multiple files into a single Dataset object. This is done with the
open_mfdataset (open multi-file-dataset) function as shown below:

#!/usr/bin/env python

Imports
import xarray as xr

Create a list of files to open
filelist = [

'GEOSChem.SpeciesConc.20160101_0000z.nc4',
'GEOSChem.SpeciesConc_20160201_0000z.nc4',
...

]

Read a restart file into an xarray Dataset object
ds = xr.open_mfdataset(filelist)

160 Chapter 23. Work with netCDF files

GCHP, Release 14.3.0

23.4 Determining if a netCDF file is COARDS-compliant

All netCDF files used as input to GEOS-Chem and/or HEMCO must adhere to the COARDS netCDF conventions. You
can use the isCoards script (from our netcdf-scripts repository at GitHub) to determine if a netCDF file adheres to the
COARDS conventions.

Run the isCoards script at the command line on any netCDF file, and you will receive a report as to which elements
of the file do not comply with the COARDS conventions.

$ isCoards myfile.nc

===
Filename: myfile.nc
===

The following items adhere to the COARDS standard:

-> Dimension "time" adheres to standard usage
-> Dimension "lev" adheres to standard usage
-> Dimension "lat" adheres to standard usage
-> Dimension "lon" adheres to standard usage
-> time(time)
-> time is monotonically increasing
-> time:axis = "T"
-> time:calendar = "gregorian"
-> time:long_name = "Time"
-> time:units = "hours since 1985-1-1 00:00:0.0"
-> lev(lev)
-> lev is monotonically decreasing
-> lev:axis = "Z"
-> lev:positive = "up"
-> lev:long_name = "GEOS-Chem levels"
-> lev:units = "sigma_level"
-> lat(lat)
-> lat is monotonically increasing
-> lat:axis = "Y"
-> lat:long_name = "Latitude"
-> lat:units = "degrees_north"
-> lon(lon)
-> lon is monotonically increasing
-> lon:axis = "X"
-> lon:long_name = "Longitude"
-> lon:units = "degrees_east"
-> OH(time,lev,lat,lon)
-> OH:long_name = "Chemically produced OH"
-> OH:units = "kg/m3"
-> OH:long_name = 1.e+30f
-> OH:missing_value = 1.e+30f
-> conventions: "COARDS"
-> history: "Mon Apr 3 08:26:19 2017"
-> title: "COARDS/netCDF file created by BPCH2COARDS (GAMAP v2-17+)"
-> format: "NetCDF-3"

(continues on next page)

23.4. Determining if a netCDF file is COARDS-compliant 161

https://github.com/geoschem/netcdf-scripts/blob/main/scripts/isCoards
https://github.com/geoschem/netcdf-scripts

GCHP, Release 14.3.0

(continued from previous page)

The following items DO NOT ADHERE to the COARDS standard:

-> time[0] != 0 (problem for GCHP)

The following optional items are RECOMMENDED:

-> Consider adding the "references" global attribute

23.5 Edit variables and attributes

As discussed in the preceding section, you may find that you need to edit your netCDF files for COARDS-compliance.
Below are several useful commands for editing netCDF files. Many of these commands utilize the nco and cdo utilities.

1. Display the header and coordinate variables of a netCDF file, with the time variable displayed in human-readable
format. Also show status of file compression and/or chunking.

$ ncdump -cts file.nc

2. Compress a netCDF file. This can considerably reduce the file size!

No deflation
$ nccopy -d0 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Minimum deflation (good for most applications)
$ nccopy -d1 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Medium deflation
$ nccopy -d5 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Maximum deflation
$ nccopy -d9 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

3. Change variable name from SpeciesConc_NO to NO:

$ ncrename -v SpeciesConc_NO,NO myfile.nc

4. Set all missing values to zero:

$ cdo setemisstoc,0 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

5. Add/change the long_name attribute of the vertical coordinate (lev) to GEOS-Chem levels. This will ensure
that HEMCO recognizes the vertical levels of the input file as GEOS-Chem model levels.

$ ncatted -a long_name,lev,o,c,"GEOS-Chem levels" myfile.nc

6. Add/change the axis and positive attributes of the vertical coordinate (lev):

162 Chapter 23. Work with netCDF files

https://hemco.readthedocs.io

GCHP, Release 14.3.0

$ ncatted -a axis,lev,o,c,"Z" myfile.nc
$ ncatted -a positive,lev,o,c,"up" myfile.nc

7. Add/change the units attribute of the latitude (lat) coordinate to degrees_north:

$ ncatted -a units,lat,o,c,"degrees_north" myfile.nc

8. Convert the units attribute of the CHLA variable from mg/m3 to kg/m3

$ ncap2 -v -s "CHLA=CHLA/1000000.0f" myfile.nc tmp.nc
$ ncatted -a units,CHLA,o,c,"kg/m3" tmp.nc
$ mv tmp.nc myfile.nc

9. Add/change the references, title, and history global attributes

$ ncatted -a references,global,o,c,"www.geos-chem.org; wiki.geos-chem.org" myfile.nc
$ ncatted -a history,global,o,c,"Tue Mar 3 12:18:38 EST 2015" myfile.nc
$ ncatted -a title,global,o,c,"XYZ data from ABC source" myfile.nc

10. Remove the references global attribute:

$ ncatted -a references,global,d,, myfile.nc

11. Add a time dimension to a file that does not have one:

$ ncap2 -h -s 'defdim(“time”,1);time[time]=0.0;time@long_name=“time”;
→˓time@calendar=“standard”;time@units=“days since 2007-01-01 00:00:00”' -O myfile.
→˓nc tmp.nc
$ mv tmp.nc myfile.nc

12. Add a time dimension to a variable:

Assume myVar has lat and lon dimensions to start with
$ ncap2 -h -s 'myVar[$time,$lat,$lon]=myVar;' myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

13. Make the time dimension unlimited:

$ ncks --mk_rec_dmn time myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

14. Change the file reference date and time (i.e. time:units) from 1 Jan 1985 to 1 Jan 2000:

$ cdo setreftime,2000-01-01,00:00:00 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

15. Shift all time values ahead or back by 1 hour in a file:

Shift ahead 1 hour
$ cdo shifttime,1hour myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Shift back 1 hour
$ cdo shiftime,-1hour myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

23.5. Edit variables and attributes 163

GCHP, Release 14.3.0

16. Set the date of all variables in the file. (Useful for files that have only one time point.)

$ cdo setdate,2019-07-02 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

Tip: The following cdo commands are similar to cdo setdate, but allow you to manipulate other time vari-
ables:

$ cdo settime,03:00:00 ... # Sets time to 03:00 UTC
$ cdo setday,26, ... # Sets day of month to 26
$ cdo setmon,10, ... # Sets month to 10 (October)
$ cdo setyear,1992, ... # Sets year to 1992

See the cdo user manual for more information.

17. Change the time:calendar attribute:

GEOS-Chem and HEMCO cannot read data from netCDF files where:

time:calendar = "360_day"
time:calendar = "365_day"
time:calendar = "noleap"

We recommend converting the calendar used in the netCDF file to the standard netCDF calendar with these
commands:

$ cdo setcalendar,standard myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

18. Change the type of the time coordinate from int to double:

$ ncap2 -s 'time=double(time)' myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

23.6 Concatenate netCDF files

There are a couple of ways to concatenate multiple netCDF files into a single netCDF file, as shown in the sections
below.

23.6.1 Concatenate with the netCDF operators

You can use the ncrcat utility (from nco) to concatenate the individual netCDF files into a single netCDF file.

Let’s assume we want to combine 12 monthy data files (e.g. month_01.nc, month_02.nc, .. month_12.nc into a
single file called annual_data.nc.

First, make sure that each of the month_*nc files has an unlimited time dimension. Type this at the command line:

$ ncdump -ct month_01.nc | grep "time"

Then you should see this as the first line in the output:

164 Chapter 23. Work with netCDF files

https://code.mpimet.mpg.de/projects/cdo/embedded/index.html#x1-2690002.6.4

GCHP, Release 14.3.0

time = UNLIMITED ; // (1 currently)

This indicates that the time dimension is unlimited. If on the other hand you see this output:

time = 1 ;

Then it means that the time dimension is fixed. If this is the case, you will have to use the ncks command to make the
time dimension unlimited, as follows:

$ ncks --mk_rec_dmn time month_01.nc tmp.nc
$ mv tmp.nc month_01.nc
... etc for the other files ...

Then use ncrcat to combine the monthly data along the time dimension, and save the result to a single netCDF file:

$ ncrcat -hO month_*nc annual_data.nc

You may then discard the month_*.nc files if so desired.

23.6.2 Concatenate with Python

You can use the xarray Python package to create a single netCDF file from multiple files. Click HERE to view a sample
Python script that does this.

23.7 Regrid netCDF files

The following tools can be used to regrid netCDF data files (such as GEOS-Chem restart files and GEOS-Chem diag-
nostic files.

23.7.1 Regrid with cdo

cdo includes several tools for regridding netCDF files. For example:

Apply conservative regridding
$ cdo remapcon,gridfile infile.nc outfile.nc

For gridfile, you can use the files here. Also see this reference.

Issue with cdo remapdis regridding tool

GEOS-Chem user Bram Maasakkers wrote:

I have noticed a problem regridding GEOS-Chem diagnostic file to 2x2.5 using cdo version 1.9.4. When
I use:

$ cdo remapdis,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

The last latitudinal band (-89.5) remains empty and gets filled with the standard missing value of cdo, which
is really large. This leads to immediate problems in the methane simulation as enormous concentrations
enter the domain from the South Pole. For now I’ve solved this problem by just using bicubic interpolation

23.7. Regrid netCDF files 165

http://xarray.pydata.org/en/stable/
https://github.com/geoschem/gcpy/blob/main/examples/working_with_files/concatenate_files.py
https://geoschemdata.wustl.edu/ExtData/HEMCO/grids/
http://www.climate-cryosphere.org/wiki/index.php?title=Regridding_with_CDO%7Cthis

GCHP, Release 14.3.0

$ cdo remapbic,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

You can also use conservative regridding:

$ cdo remapcon,geos.2x25.grid GEOSChem.Restart.4x5.nc GEOSChem.Restart.2x25.nc

23.7.2 Regrid with GCPy

GCPy (the GEOS-Chem Python Toolkit) has contains file regridding utilities that allow you to regrid from lat/lon to
cubed-sphere grids (and vice versa). Regridding weights can be generated on-the-fly, or can be archived and reused.
For detailed instructions, please see the please see the GCPy Regridding documentation.

23.7.3 Regrid with nco

nco also includes several regridding utilities. See the Regridding section of the NCO User Guide for more information.

23.7.4 Regrid with xarray

The xarray Python package has a built-in capability for 1-D interpolation. It wraps the SciPy interpolation module.
This functionality can also be used for vertical regridding.

23.7.5 Regrid with xESMF

xESMF is a universal regridding tool for geospatial data, which is written in Python. It can be used to regrid data not
only on cartesian grids, but also on cubed-sphere and unstructured grids.

Note: xESMF only handles horizontal regridding.

23.8 Crop netCDF files

If needed, a netCDF file can be cropped to a subset of the globe with the nco or cdo utilities (cf. Useful tools).

For example, cdo has a selbox operator for selecting a box by specifying the lat/lon bounds:

$ cdo sellonlatbox,lon1,lon2,lat1,lat2 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

See the cdo guide for more information.

166 Chapter 23. Work with netCDF files

https://gcpy.readthedocs.io/en/latest/Regridding.html
http://nco.sourceforge.net/nco.html#Regridding
https://xarray.readthedocs.io
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://xesmf.readthedocs.io
https://code.zmaw.de/projects/cdo/embedded/cdo.pdf

GCHP, Release 14.3.0

23.9 Add a new variable to a netCDF file

You have a couple of options for adding a new variable to a netCDF file (for example, when having to add a new species
to an existing GEOS-Chem restart file).

1. You can use cdo and nco utilities to copy the data from one variable to another variable. For example:

#!/bin/bash

Extract field SpeciesRst_PMN from the original restart file
cdo selvar,SpeciesRst_PMN initial_GEOSChem_rst.4x5_standard.nc NPMN.nc4

Rename selected field to SpeciesRst_NPMN
ncrename -h -v SpeciesRst_PMN,Species_Rst_NPMN NMPN.nc4

Append new species to existing restart file
ncks -h -A -M NMPN.nc4 initial_GEOSChem_rst.4x5_standard.nc

2. Sal Farina wrote a simple Python script for adding a new species to a netCDF restart file:

#!/usr/bin/env python

import netCDF4 as nc
import sys
import os

for nam in sys.argv[1:]:
f = nc.Dataset(nam,mode='a')
try:

o = f['SpeciesRst_OCPI']
except:

print "SpeciesRst_OCPI not defined"
f.createVariable('SpeciesRst_SOAP',o.datatype,dimensions=o.dimensions,fill_

→˓value=o._FillValue)
soap = f['SpeciesRst_SOAP']
soap[:] = 0.0
soap.long_name= 'SOAP species'
soap.units = o.units
soap.add_offset = 0.0
soap.scale_factor = 1.0
soap.missing_value = 1.0e30
f.close()

3. Bob Yantosca wrote this Python script to insert a fake species into GEOS-Chem Classic and GCHP restart files
(13.3.0)

#!/usr/bin/env python
"""
Adds an extra DataArray for into restart files:
Calling sequence:

./append_species_into_restart.py
"""
Imports
import gcpy.constants as gcon

(continues on next page)

23.9. Add a new variable to a netCDF file 167

GCHP, Release 14.3.0

(continued from previous page)

import xarray as xr
from xarray.coding.variables import SerializationWarning
import warnings

Suppress harmless run-time warnings (mostly about underflow or NaNs)
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=SerializationWarning)

def main():
"""
Appends extra species to restart files.
"""
Data vars to skip
skip_vars = gcon.skip_these_vars
List of dates
file_list = [

'GEOSChem.Restart.fullchem.20190101_0000z.nc4',
'GEOSChem.Restart.fullchem.20190701_0000z.nc4',
'GEOSChem.Restart.TOMAS15.20190701_0000z.nc4',
'GEOSChem.Restart.TOMAS40.20190701_0000z.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c180.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c24.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c360.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c48.nc4',
'GCHP.Restart.fullchem.20190101_0000z.c90.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c180.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c24.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c360.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c48.nc4',
'GCHP.Restart.fullchem.20190701_0000z.c90.nc4'

]
Keep all netCDF attributes
with xr.set_options(keep_attrs=True):

Loop over dates
for f in file_list:

Input and output files
infile = '../' + f
outfile = f
print("Creating " + outfile)

Open input file
ds = xr.open_dataset(infile, drop_variables=skip_vars)
Create a new DataArray from a given species (EDIT ACCORDINGLY)
if "GCHP" in infile:

dr = ds["SPC_ETO"]
dr.name = "SPC_ETOO"

else:
dr = ds["SpeciesRst_ETO"]
dr.name = "SpeciesRst_ETOO"

Update attributes (EDIT ACCORDINGLY)

(continues on next page)

168 Chapter 23. Work with netCDF files

GCHP, Release 14.3.0

(continued from previous page)

dr.attrs["FullName"] = "peroxy radical from ethene"
dr.attrs["Is_Gas"] = "true"
dr.attrs["long_name"] = "Dry mixing ratio of species ETOO"
dr.attrs["MW_g"] = 77.06
Merge the new DataArray into the Dataset
ds = xr.merge([ds, dr], compat="override")

Create a new file
ds.to_netcdf(outfile)

Free memory by setting ds to a null dataset
ds = xr.Dataset()

if __name__ == "__main__":
main()

23.10 Chunk and deflate a netCDF file to improve I/O

We recommend that you chunk the data in your netCDF file. Chunking specifies the order in along which the data will
be read from disk. The Unidata web site has a good overview of why chunking a netCDF file matters.

For GEOS-Chem with the high-performance option (aka GCHP), the best file I/O performance occurs when the file is
split into one chunk per level (assuming your data has a lev dimension). This allows each individual vertical level of
data to be read in parallel.

You can use the nccopy command of nco to do the chunking. For example, say you have a netCDF file called myfile.
nc with these dimensions:

dimensions:
time = UNLIMITED ; // (12 currently)
lev = 72 ;
lat = 181 ;
lon = 360 ;

Then you can use the nccopy command to apply the optimal chunking along levels:

$ nccopy -c lon/360,lat/181,lev/1,time/1 -d1 myfile.nc tmp.nc
$ mv tmp.nc myfile.nc

This will create a new file called tmp.nc that has the proper chunking. We then replace myfile.ncwith this temporary
file.

You can specify the chunk sizes that will be applied to the variables in the netCDF file with the -c argument to nccopy.
To obtain the optimal chunking, the lon chunksize must be identical to the number of values along the longitude
dimension (e.g. lon/360 and the lat chunksize must be equal to the number of points in the latitude dimension (e.g.
lat/181).

We also recommend that you deflate (i.e. compress) the netCDF data variables at the same time you apply the
chunking. Deflating can substantially reduce the file size, especially for emissions data that are only defined over the
land but not over the oceans. You can deflate the data in a netCDF file by specifying the -d argumetnt to nccopy. There
are 10 possible deflation levels, ranging from 0 (no deflation) to 9 (max deflation). For most purposes, a deflation level
of 1 (d1) is sufficient.

23.10. Chunk and deflate a netCDF file to improve I/O 169

https://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_why_it_matters
https://gchp.readthedocs.io

GCHP, Release 14.3.0

The GEOS-Chem Support Team has created a Perl script named nc_chunk.pl (contained in the netcdf-scripts repository
at GitHub) that will automatically chunk and compress data for you.

$ nc_chunk.pl myfile.nc # Chunk netCDF file
$ nc_chunk.pl myfile.nc 1 # Chunk and compress file using deflate level 1

You can use the ncdump -cts myfile.nc command to view the chunk size and deflation level in the file. After
applying the chunking and compression to myfile.nc, you would see output such as this:

dimensions:
time = UNLIMITED ; // (12 currently)
lev = 72 ;
lat = 181 ;
lon = 360 ;

variables:
float PRPE(time, lev, lat, lon) ;

PRPE:long_name = "Propene" ;
PRPE:units = "kgC/m2/s" ;
PRPE:add_offset = 0.f ;
PRPE:scale_factor = 1.f ;
PRPE:_FillValue = 1.e+15f ;
PRPE:missing_value = 1.e+15f ;
PRPE:gamap_category = "ANTHSRCE" ;
PRPE:_Storage = "chunked" ;
PRPE:_ChunkSizes = 1, 1, 181, 360 ;
PRPE:_DeflateLevel = 1 ;
PRPE:_Endianness = "little" ;\

float CO(time, lev, lat, lon) ;
CO:long_name = "CO" ;
CO:units = "kg/m2/s" ;
CO:add_offset = 0.f ;
CO:scale_factor = 1.f ;
CO:_FillValue = 1.e+15f ;
CO:missing_value = 1.e+15f ;
CO:gamap_category = "ANTHSRCE" ;
CO:_Storage = "chunked" ;
CO:_ChunkSizes = 1, 1, 181, 360 ;
CO:_DeflateLevel = 1 ;
CO:_Endianness = "little" ;\

The attributes that begin with a _ character are “hidden” netCDF attributes. They represent file properties instead
of user-defined properties (like the long name, units, etc.). The “hidden” attributes can be shown by adding the -s
argument to ncdump.

170 Chapter 23. Work with netCDF files

https://wiki.geos-chem.org/GEOS-Chem_Support_Team
https://github.com/geoschem/netcdf-scripts/blob/main/scripts/nc_chunk.pl
https://github.com/geoschem/netcdf-scripts
https://github.com/geoschem/netcdf-scripts

CHAPTER

TWENTYFOUR

PREPARE COARDS-COMPLIANT NETCDF FILES

On this page we discuss how you can generate netCDF data files in the proper format for HEMCO and and GEOS-Chem.

24.1 The COARDS netCDF standard

The Harmonized Emissions Compionent (HEMCO) reads data stored in the netCDF file format, which is a common
data format used in atmospheric and climate sciences. NetCDF files contain data arrays as well as metadata, which
is a description of the data.

Several netCDF conventions have been developed in order to facilitate data exchange and visualization. The Cooperative
Ocean Atmosphere Research Data Service (COARDS) standard defines regular conventions for naming dimensions as
well as the attributes describing the data. You will find more information about these conventions in the sections below.
HEMCO requires its input data to be adhere to the COARDS standard.

Our our “Work with netCDF files” supplemental guide contains detailed instructions on how you can check a netCDF
file for COARDS compliance.

24.2 COARDS dimensions

The dimensions of a netCDF file define how many grid boxes there are along a given direction. While the COARDS
standard does not require any specific n

ames for dimensions, accepted practice is to use these names for rectilinear grids:

time

Specifies the number of points along the time (T) axis.

The time dimension must always be specified. When you create the netCDF file, you may declare time to be
UNLIMITED and then later define its size. This allows you to append further time points into the file later on.

lev

Specifies the number of points along the vertical level (Z) axis.

This dimension may be omitted none of the data arrays in the netCDF file have a vertical dimension.

lat

Specifies the number of points along the latitude (Y) axis.

lon

Specifies the number of points along the longitude (X) axis.

171

https://hemco.readthedocs.io
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attributes.html

GCHP, Release 14.3.0

Note: For non-rectilinear grids (e.g. cubed-sphere), the lat and lon dimensions may be named NY and NX instead.

24.3 COARDS coordinate vectors

Coordinate vectors (aka index variables or axis variables) are 1-dimensional arrays that define the values along each
axis.

The only COARDS requirement for coordinate vectors are these:

1. Each coordinate vector must be given the same name as the dimension that is used to define it.

2. All of the values contained within a coordinate vector must be either monotonically increasing or monotonically
decreasing.

24.3.1 time

A COARDS-compliant time coordinate vector will have these features:

dimensions
time = UNLIMITED ; // (12 currently)

. . .
variables

double time(time) ;
time:long_name = "time" ;
time:units = "hours since 2010-01-01 00:00:00" ;
time:calendar = "standard" ;
time:axis = "T";

Note: The above was generated by the ncdump command.

As you can see, time is an 8-byte floating point (aka REAL*8 with 12 time points.

The time coordinate vector has following attributes:

time:long_name

A detailed description of the contents of this array. This is usually set to time or Time.

time:units

Specifies the number of hours, minutes, seconds, etc. that has elapsed with respect to a reference datetime
YYYY-MM-DD hh:mn:ss. Set this to one of the folllowing values:

• "days since YYYY-MM-DD hh:mn:ss"

• "hours since YYYY-MM-DD hh:mn:ss"

• "minutes since YYYY-MM-DD hh:mn:ss"

• "seconds since YYYY-MM-DD hh:mn:ss"

Tip: We recommend that you choose the reference datetime to correspond to the first time value in the file (i.e.
time(0) = 0).

172 Chapter 24. Prepare COARDS-compliant netCDF files

GCHP, Release 14.3.0

time:calendar

Specifies the calendar used to define the time system. Set this to one of the following values:

standard

Synonym for gregorian.

gregorian

Selects the Gregorian calendar system.

time:axis

Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to T.

Special considerations for time vectors

1. We recommend that index variables (such as time) be declared with type float or double. GCHP cannot parse
files with that have index variables of type int.

2. We have noticed that netCDF files having a time:units reference datetime prior to 1900/01/01 00:00:00
may not be read properly when using HEMCO or GCHP within an ESMF environment. We therefore recommend
that you use reference datetime values after 1900 whenever possible.

3. Weekly data must contain seven time slices in increments of one day. The first entry must represent Sunday data,
regardless of the real weekday of the assigned datetime. It is possible to store weekly data for more than one time
interval, in which case the first weekday (i.e. Sunday) must hold the starting date for the given set of (seven) time
slices.

• For instance, weekly data for every month of a year can be stored as 12 sets of 7 time slices. The reference
datetime of the first entry of each set must fall on the first day of every month, and the following six entries
must be increments of one day.

Currently, weekly data from netCDF files is not correctly read in an ESMF environment.

24.3.2 lev

A COARDS-compliant lev coordinate vector will have these features:

dimensions:
lev = 72 ;

. . .
variables:

double lev(lev) ;
lev:long_name = "level" ;
lev:units = "level" ;
lev:positive = "up" ;
lev:axis = "Z" ;

Here, lev is an 8-byte floating point (aka REAL*8) with 72 levels.

The lev coordinate vector has the following attributes:

lev:long_name

A detailed description of the contents of this array. You may set this to values such as:

• "level"

• "GEOS-Chem levels"

24.3. COARDS coordinate vectors 173

https://gchp.readthedocs.io
https://hemco.readthedocs.io
https://gchp.readthedocs.io

GCHP, Release 14.3.0

• "Eta centers"

• "Sigma centers"

lev:units

(Required) Specifies the units of vertical levels. Set this to one of the following:

• "levels"

• "eta_level"

• "sigma_level"

Important: If you set long_name: to level as well, then HEMCO will be able to regrid between GEOS-Chem
vertical grids.

lev:axis

Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to Z.

lev:positive

Specifies the direction in which the vertical dimension is indexed. Set this to one of these values:

• "up" (Level 1 is the surface, and level indices increase upwards)

• "down" (Level 1 is the atmosphere top, and level indices increase downwards)

For emisisons and most other data sets, you can set lev:positive to "up".

Important: GCHP and the NASA GEOS-ESM use a vertical grid where lev:positive is "down".

Additional considerations for lev vectors:

When using GEOS-Chem or HEMCO in a non-ESMF environment, data is interpolated onto the simulation levels if
the input data is on vertical levels other than the HEMCO model levels (see HEMCO vertical regridding).

Data on non-model levels must be on a hybrid sigma pressure coordinate system. In order to properly determine the
vertical pressure levels of the input data, the file must contain the surface pressure values and the hybrid coefficients
(a, b) of the coordinate system. Furthermore, the level variable must contain the attributes standard_name and for-
mula_terms (the attribute positive is recommended but not required). A header excerpt of a valid netCDF file is shown
below:

float lev(lev) ;
lev:standard_name = ”atmosphere_hybrid_sigma_pressure_coordinate” ;
lev:units = ”level” ;
lev:positive = ”down” ;
lev:formula_terms = ”ap: hyam b: hybm ps: PS” ;

float hyam(nhym) ;
hyam:long_name = ”hybrid A coefficient at layer midpoints” ;
hyam:units = ”hPa” ;

float hybm(nhym) ;
hybm:long_name = ”hybrid B coefficient at layer midpoints” ;
hybm:units = ”1” ;

float time(time) ;
time:standard_name = ”time” ;

(continues on next page)

174 Chapter 24. Prepare COARDS-compliant netCDF files

https://geos-chem.readthedocs.io
https://hemco.readthedocs.io
https://hemco.readthedocs.io/en/latest/hco-ref-guide/input-file-format.html#vertical-regridding

GCHP, Release 14.3.0

(continued from previous page)

time:units = ”days since 2000-01-01 00:00:00” ;
time:calendar = ”standard” ;

float PS(time, lat, lon) ;
PS:long_name = ”surface pressure” ;
PS:units = ”hPa” ;

float EMIS(time, lev, lat, lon) ;
EMIS:long_name = ”emissions” ;
EMIS:units = ”kg m-2 s-1” ;

24.3.3 lat

A COARDS-compliant lat coordinate vector will have these features:

dimensions:
lat = 181 ;

variables:``
double lat(lat) ;

lat:long_name = "Latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;

Here, lat is an 8-byte floating point (aka REAL*8) with 181 values.

The lat coordinate vector has the following attributes:

lat:long_name

A detailed description of the contents of this array. Set this to Latitude.

lat:units

Specifies the units of latitude. Set this to degrees_north.

lat:axis

Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to Y.

24.3.4 lon

A COARDS-compliant lat coordinate vector will have these features:

dimensions:
lon = 360 ;

variables:``
double lon(lon) ;

lon:long_name = "Longitude" ;
lon:units = "degrees_east" ;
lon:axis = "X" ;

Here, lon is an 8-byte floating point (aka REAL*8) with 360 values.

The lon coordinate vector has following attributes:

lon:long_name

A detailed description of the contents of this array. Set this to Longitude.

24.3. COARDS coordinate vectors 175

GCHP, Release 14.3.0

lon:units

Specifies the units of latitude. Set this to degrees_east.

lon:axis

Identifies the axis (X,Y,Z,T) corresponding to this coordinate vector. Set this to X.

Longitudes may be represented modulo 360. For example, -180, 180, and 540 are all valid representations of the
International Dateline and 0 and 360 are both valid representations of the Prime Meridian. Note, however, that the
sequence of numerical longitude values stored in the netCDF file must be monotonic in a non-modulo sense.

Practical guidelines:

1. If your grid begins at the International Dateline (-180°), then place your longitudes into the range -180..180.

2. If your grid begins at the Prime Meridian (0°), then place your longitudes into the range 0..360.

24.4 COARDS data arrays

A COARDS-compliant netCDF file may contain several data arrays. In our example file shown above, there are two
data arrays:

dimensions:
time = UNLIMITED ; // (12 currently)
lev = 72 ;
lat = 181 ;
lon = 360 ;

variables:``
float PRPE(time, lev, lat, lon) ;

PRPE:long_name = "Propene" ;
PRPE:units = "kgC/m2/s" ;
PRPE:add_offset = 0.f ;
PRPE:missing_value = 1.e+15f ;

float CO(time, lev, lat, lon) ;``
CO:long_name = "CO" ;
CO:units = "kg/m2/s" ;
CO:_FillValue = 1.e+15f ;
CO:missing_value = 1.e+15f ;

These arrays contain emissions for species tracers PRPE (lumped < C3 alkenes) and CO.

24.4.1 Attributes for data arrays

long_name

Gives a detailed description of the contents of the array.

units

Specifies the units of data contained within the array. SI units are preferred.

Special usage for HEMCO:

• Use kg/m2/s or kg m-2 s-1 for emission fluxes of species

• Use kg/m3 or kg m-3 for concentration data;

• Use 1 for dimensionless data instead of unitless. HEMCO will recognize unitless, but it is non-
standard and not recommended.

176 Chapter 24. Prepare COARDS-compliant netCDF files

GCHP, Release 14.3.0

missing_value

Specifies the value that should represent missing data. This should be set to a number that will not be mistaken
for a valid data value.

_FillValue

Synonym for missing_value. It is recommended to set both missing_value and _FillValue to the same
value. Some data visualization packages look for one but not the other.

24.4.2 Ordering of the data

2D and 3D array variables in netCDF files must have specific dimension order. If the order is incorrect you will
encounter netCDF read error “start+count exceeds dimension bound”. You can check the dimension ordering of your
arrays by using the ncdump command as shown below:

$ ncdump file.nc -h

Be sure to check the dimensions listed next to the array name rather than the ordering of the dimensions listed at the
top of the ncdump output.

The following dimension orders are acceptable:

array(time,lat,lon)
array(time,lat,lon,lev)

The rest of this section explains why the dimension ordering of arrays matters.

When you use ncdump to examine the contents of a netCDF file, you will notice that it displays the dimensions of the
data in the opposite order with respect to Fortran. In our sample file, ncdump says that the CO and PRPE arrays have
these dimensions:

CO(time,lev,lat,lon)
PRPE(time,lev,lat,lon)

But if you tried to read this netCDF file into GEOS-Chem (or any other program written in Fortran), you must use data
arrays that have these dimensions:

CO(lon,lat,lev,time)
PRPE(lon,lat,lev,time)

Here’s why:

Fortran is a column-major language, which means that arrays are stored in memory by columns first, then by rows. If
you have declared an arrays such as:

INTEGER :: I, J, L, T
INTEGER, PARAMETER :: N_LON = 360
INTEGER, PARAMETER :: N_LAT = 181
INTEGER, PARAMETER :: N_LEV = 72
INTEGER, PARAMTER :: N_TIME = 12
REAL*4 :: CO (N_LON,N_LAT,N_LEV,N_TIME)
REAL*4 :: PRPE(N_LON,N_LAT,N_LEV,N_TIME)

then for optimal efficiency, the leftmost dimension (I) needs to vary the fastest, and needs to be accessed by the inner-
most DO-loop. Then the next leftmost dimension (J) should be accessed by the next innermost DO-loop, and so on.
Therefore, the proper way to loop over these arrays is:

24.4. COARDS data arrays 177

GCHP, Release 14.3.0

DO T = 1, N_TIME
DO L = 1, N_LEV
DO J = 1, N_LAT
DO I = 1, N_LON

CO (I,J,L,N) = ...
PRPE(I,J,L,N) = ...

ENDDO
ENDDO
ENDDO
ENDDO

Note that the I index is varying most often, since it is the innermost DO-loop, then J, L, and T. This is opposite to how
a car’s odometer reads.

If you loop through an array in this fashion, with leftmost indices varying fastest, then the code minimizes the number
of times it has to load subsections of the array into cache memory. In this optimal manner of execution, all of the array
elements sitting in the cache memory are read in the proper order before the next array subsection needs to be loaded
into the cache. But if you step through array elements in the wrong order, the number of cache loads is proportionally
increased. Because it takes a finite amount of time to reload array elements into cache memory, the more times you
have to access the cache, the longer it will take the code to execute. This can slow down the code dramatically.

On the other hand, C is a row-major language, which means that arrays are stored by rows first, then by columns. This
means that the outermost do loop (I) is varying the fastest. This is identical to how a car’s odometer reads.

If you use a Fortran program to write data to disk, and then try to read that data from disk into a program written in C,
then unless you reverse the order of the DO loops, you will be reading the array in the wrong order. In C you would
have to use this ordering scheme (using Fortran-style syntax to illustrate the point):

DO I = 1, N_LON
DO J = 1, N_LAT
DO L = 1, N_LEV
DO T = 1, N_TIME

CO(T,L,J,I) = ...
PRPE(T,L,J,I) = ...

ENDDO
ENDDO
ENDDO
ENDDO

Because ncdump is written in C, the order of the array appears opposite with respect to Fortran. The same goes for any
other code written in a row-major programming language.

24.5 COARDS Global attributes

Global attributes are netCDF attributes that contain information about a netCDF file, as opposed to information about
an individual data array.

From our example in the Examine the contents of a netCDF file, the output from ncdump showed that our sample
netCDF file has several global attributes:

// global attributes:
:Title = "COARDS/netCDF file containing X data"
:Contact = "GEOS-Chem Support Team (geos-chem-support@as.harvard.edu)" ;

(continues on next page)

178 Chapter 24. Prepare COARDS-compliant netCDF files

https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attributes.html

GCHP, Release 14.3.0

(continued from previous page)

:References = "www.geos-chem.org; wiki.geos-chem.org" ;
:Conventions = "COARDS" ;
:Filename = "my_sample_data_file.1x1"
:History = "Mon Mar 17 16:18:09 2014 GMT" ;
:ProductionDateTime = "File generated on: Mon Mar 17 16:18:09 2014 GMT" ;
:ModificationDateTime = "File generated on: Mon Mar 17 16:18:09 2014 GMT" ;
:VersionID = "1.2" ;
:Format = "NetCDF-3" ;
:Model = "GEOS5" ;
:Grid = "GEOS_1x1" ;
:Delta_Lon = 1.f ;
:Delta_Lat = 1.f ;
:SpatialCoverage = "global" ;
:NLayers = 72 ;
:Start_Date = 20050101 ;
:Start_Time = 00:00:00.0 ;
:End_Date = 20051231 ;
:End_Time = 23:59:59.99999 ;

Title (or title)

Provides a short description of the file.

Contact (or contact)

Provides contact information for the person(s) who created the file.

References (or references)

Provides a reference (citation, DOI, or URL) for the data contained in the file.

Conventions (or conventions)

Indicates if the netCDF file adheres to a standard (e.g. COARDS or CF).

Filename (or filename)

Specifies the name of the file.

History (or history)

Specifies the datetime of file creation, and of any subsequent modifications.

Note: If you edit the file with nco or cdo, then this attribute will be updated to reflect the modification that was
done.

Format (or format)

Specifies the format of the netCDF file (such as netCDF-3 or netCDF-4).

24.5. COARDS Global attributes 179

GCHP, Release 14.3.0

24.6 For more information

Please see our Work with netCDF files Supplemental Guide for more information about commands that you can use to
combine, edit, or maniuplate data in netCDF files.

180 Chapter 24. Prepare COARDS-compliant netCDF files

CHAPTER

TWENTYFIVE

CUSTOMIZE SIMULATIONS WITH RESEARCH OPTIONS

Most of the time you will want to use the “out-of-the-box” settings in your GEOS-Chem simulations, as these are the
recommended settings that have been evaluated with benchmark simulations. But depending on your research needs,
you may wish to use alternate simulation options. In this Guide we will show you how you can select these research
options by editing the various GEOS-Chem and HEMCO configuration files.

25.1 Aerosols

25.1.1 Aerosol microphysics

GEOS-Chem incorporates two different aerosol microphysics schemes: APM (Yu and Luo [2009]) and TOMAS (Triv-
itayanurak et al. [2008]) as compile-time options for the full-chemistry simulation. Both APM and TOMAS are
deactivated by default due to the extra computational overhead that these microphysics schemes require.

Follow the steps below to activate either APM or TOMAS microphysics in your full-chemistry simulation.

APM

1. Create a run directory for the Full Chemistry simulation with APM as the extra simulation option.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DAPM=y
$ make -j
$ make install

TOMAS

1. Create a run directory for the Full Chemistry simulation with TOMAS as the extra simulation option.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DTOMAS=y -DTOMAS_BINS=15
$ make -j
$ make install

181

GCHP, Release 14.3.0

This will create a GEOS-Chem executable for the TOMAS15 (15 size bins) simulation. To generate an executable
for the TOMAS40 (40 size-bins) simulation, replace -DTOMAS_BINS=15 with -DTOMAS_BINS=40 in the cmake step
above.

25.2 Chemistry

25.2.1 Adaptive Rosenbrock solver with mechanism auto-reduction

In Lin et al. [2023], the authors introduce an adaptive Rosenbrock solver with on-the-fly mechanism reduction in
The Kinetic PreProcessor (KPP) version 3.0.0 and later. While this adaptive solver is available for all GEOS-Chem
simulations that use the fullchem simulation, it is disabled by default.

To activate the adaptive Rosenbrock solver with mechanism auto-reduction, edit the line of geoschem_config.yml
indicated below:

chemistry:
activate: true
... Previous sub-sections omitted
autoreduce_solver:
activate: false # <== true activates the adaptive Rosenbrock solver
use_target_threshold:
activate: true
oh_tuning_factor: 0.00005
no2_tuning_factor: 0.0001

use_absolute_threshold:
scale_by_pressure: true
absolute_threshold: 100.0

keep_halogens_active: false
append_in_internal_timestep: false

Please see the Lin et al. [2023] reference for a detailed explanation of the other adaptive Rosenbrock solver options.

25.2.2 Alternate chemistry mechanisms

GEOS-Chem is compiled “out-of-the-box” with KPP-generated solver code for the fullchem mechanism. But you
must manually specify the mechanism name at configuration time for the following instances:

Carbon mechanism

Follow these steps to build an executable with the carbon mechanism:

1. Create a run directory for the Carbon simulation

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DMECH=carbon
$ make -j
$ make install

182 Chapter 25. Customize simulations with research options

https://kpp.readthedocs.io/en/stable/tech_info/07_numerical_methods.html#rosenbrock-with-mechanism-auto-reduction
https://kpp.readthedocs.io

GCHP, Release 14.3.0

Custom full-chemistry mechanism

We recommend that you use the custom mechanism instead of directly modifying the fullchem mechanism. The
custom mechanism is a copy of fullchem, but the KPP solver code will be generated in the KPP/custom folder
instead of in KPP/fullchem. This lets you keep the fullchem folder untouched.

Follow these steps:

1. Create a run directory for the full-chemistry simulation (whichever configuration you need).

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DMECH=custom
$ make -j
$ make install

Hg mechanism

Follow these steps to build an executable with the Hg (mercury) mechanism:

1. Create a run directory for the Hg simulation.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DMECH=Hg
$ make -j
$ make install

25.2.3 HO2 heterogeneous chemistry reaction probability

You may update the value of 𝛾𝐻𝑂2 (reaction probability for uptake of HO2 in heterogeneous chemistry) used in your
simulations. Edit the line of geoschem_config.yml indicated below:

chemistry:
activate: true
... Preceding sections omitted ...
gamma_HO2: 0.2 # <=== add new value here

25.2.4 TransportTracers

In GEOS-Chem 14.2.0 and later versions, species belonging to the TransportTracers simulation (radionuclides and
passive species) now have their properties defined in the species_database.yml file. For example:

CH3I:
Background_VV: 1.0e-20
Formula: CH3I
FullName: Methyl iodide
Henry_CR: 3.6e+3
Henry_K0: 0.20265

(continues on next page)

25.2. Chemistry 183

GCHP, Release 14.3.0

(continued from previous page)

Is_Advected: true
Is_Gas: true
Is_Photolysis: true
Is_Tracer: true
Snk_Horiz: all
Snk_Mode: efolding
Snk_Period: 5
Snk_Vert: all
Src_Add: true
Src_Mode: HEMCO
MW_g: 141.94

where:

• Is_Tracer: true indicates a TransportTracer species

• Snk_* define species sink properties

• Src_* define species source properties

• Units: specifies the default units for species (added mainly for age of air species at this time which are in days)

For TransportTracers species that have a source term in HEMCO, there will be corresponding entries in
HEMCO_Config.rc:

--> OCEAN_CH3I : true

... etc ...

#==
CH3I emitted over the oceans at rate of 1 molec/cm2/s
#==
(((OCEAN_CH3I
0 SRC_2D_CH3I 1.0 - - - xy molec/cm2/s CH3I 1000 1 1
)))OCEAN_CH3I

Sources and sinks for TransportTracers are now applied in the new source code module GeosCore/tracer_mod.F90.

Note: Sources and sinks for radionuclide species (Rn, Pb, Be isotopes) are currently not applied in GeosCore/
tracer_mod.F90 (but may be in the future). Emissions for radionuclide species are computed by the HEMCO
GC-Rn-Pb-Be extension and chemistry is done in GeosCore/RnPbBe_mod.F90.

TransportTracer properties for radionuclide species have been added to species_database.yml but are currently
commented out.

184 Chapter 25. Customize simulations with research options

GCHP, Release 14.3.0

25.3 Diagnostics

25.3.1 GEOS-Chem and HEMCO diagnostics

Please see our Diagnostics reference chapter for an overview of how to archive diagnostics from GEOS-Chem and
HEMCO.

25.3.2 RRTMG radiative transfer diagnostics

You can use the RRTMG radiative transfer model to archive radiative forcing fluxes to the GeosRad History diagnostic
collection. RRTMG is implemented as a compile-time option due to the extra computational overhead that it incurs.

To activate RRTMG, follow these steps:

1. Create a run directory for the Full Chemistry simulation, with extra option RRTMG.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DRRTMG=y
$ make -j
$ make install

Then also make sure to request the radiative forcing flux diagnostics that you wish to archive in the HISTORY.rc file.

25.4 Emissions

25.4.1 Offline vs. online emissions

Emission inventories sometimes include dynamic source types and nonlinear scale factors that have functional depen-
dencies on local environmental variables such as wind speed or temperature, which are best calculated online during
execution of the model. HEMCO includes a suite of additional modules (aka HEMCO extensions) that perform online
emissions ccalculations for a variety of sources.

Some types of emissions are highly sensitive to meteorological variables such as wind speed and temperature. Because
the meteorological inputs are regridded from their native resolution to the GEOS-Chem or HEMCO simulation grid,
emissions computed with fine-resolution meteorology can significantly differ from emissions computed with coarse-
resolution meteorology. This can make it difficult to compare the output of GEOS-Chem and HEMCO simulations that
use different horizontal resolutions.

In order to provide more consistency in the computed emissions, we now make available for download offline emissions.
These offline emissions are pre-computed with HEMCO standalone simulations using meteorological inputs at native
horizontal resolutions possible. When these emissions are regridded within GEOS-Chem and HEMCO, the total mass
emitted will be conserved regardless of the horizontal resolution of the simulation grid.

You should use offline emissions:

• For all GCHP simulations

• For full-chemistry simulations (except benchmark)

You should use online emissions:

• For benchmark simulations

25.3. Diagnostics 185

https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/diagnostics.html
https://hemco.readthedocs.io/en/stable/hco-ref-guide/extensions.html

GCHP, Release 14.3.0

• If you wish to assess the impact of changing/updating the meteorlogical inputs on emissions.

You may toggle offline emissions on (true) or off (false) in this section of HEMCO_Config.rc:

----- OFFLINE EMISSIONS ---
To use online emissions instead set the offline emissions to 'false' and the
corresponding HEMCO extension to 'on':
OFFLINE_DUST - DustDead or DustGinoux
OFFLINE_BIOGENICVOC - MEGAN
OFFLINE_SEASALT - SeaSalt
OFFLINE_SOILNOX - SoilNOx
#
NOTE: When switching between offline and online emissions, make sure to also
update ExtNr and Cat in HEMCO_Diagn.rc to properly save out emissions for
any affected species.
#--

--> OFFLINE_DUST : true # 1980-2019
--> OFFLINE_BIOGENICVOC : true # 1980-2020
--> OFFLINE_SEASALT : true # 1980-2019
--> CalcBrSeasalt : true
--> OFFLINE_SOILNOX : true # 1980-2020

As stated in the comments, if you switch between offline and online emissions, you will need to activate the corre-
sponding HEMCO extension:

Table 1: Offline emissions and corresponding HEMCO extensions

Offline base emission Extension # Corresponding HEMCO extension Extension #
OFFLINE_DUST 0 DustDead 105
OFFLINE_BIOGENICVOC 0 MEGAN 108
OFFLINE_SEASALT 0 SeaSalt 107
OFFLINE_SOILNOX 0 SoilNOx 104

Example: Disabling offline dust emissions

1. Change the OFFLINE_DUST setting from true to false in HEMCO_Config.rc:

--> OFFLINE_DUST : false # 1980-2019

2. Change the DustDead extension setting from off to on in HEMCO_Config.rc:

105 DustDead : on DST1/DST2/DST3/DST4

3. Change the extension number for all dust emission diagnostics from 0 (the extension number for base emissions)
to 105 (the extension number for DustDead) in HEMCO_Diagn.rc.

###
Dust emissions
###
EmisDST1_Total DST1 -1 -1 -1 2 kg/m2/s DST1_emission_flux_from_all_
→˓sectors
EmisDST1_Anthro DST1 105 1 -1 2 kg/m2/s DST1_emission_flux_from_
→˓anthropogenic

(continues on next page)

186 Chapter 25. Customize simulations with research options

GCHP, Release 14.3.0

(continued from previous page)

EmisDST1_Natural DST1 105 3 -1 2 kg/m2/s DST1_emission_flux_from_
→˓natural_sources
EmisDST2_Natural DST2 105 3 -1 2 kg/m2/s DST2_emission_flux_from_
→˓natural_sources
EmisDST3_Natural DST3 105 3 -1 2 kg/m2/s DST3_emission_flux_from_
→˓natural_sources
EmisDST4_Natural DST4 105 3 -1 2 kg/m2/s DST4_emission_flux_from_
→˓natural_sources

To enable online emissions again, do the inverse of the steps listed above.

25.4.2 Sea salt debromination

In Zhu et al. [2018], the authors present a mechanistic description of sea salt aerosol debromination. This option was
originally enabled by in GEOS-Chem 13.4.0, but was then changed to be an option (disabled by default) due to the
impact it had on ozone concentrations.

Further chemistry updates to GEOS-Chem have allowed us to re-activate sea-salt debromination as the default option
in GEOS-Chem 14.2.0 and later versions. If you wish to disable sea salt debromination in your simulations, edit the
line in HEMCO_Config.rc indicated below.

107 SeaSalt : on SALA/SALC/SALACL/SALCCL/SALAAL/SALCAL/BrSALA/BrSALC/
→˓MOPO/MOPI
... Preceding options omitted ...
--> Model sea salt Br- : true # <== false deactivates sea salt␣

→˓debromination
--> Br- mass ratio : 2.11e-3

25.5 Photolysis

25.5.1 Particulate nitrate photolysis

A study by Shah et al. [2023] showed that particulate nitrate photolysis increases GEOS-Chem modeled ozone con-
centrations by up to 5 ppbv in the free troposphere in northern extratropical regions. This helps to correct a low bias
with respect to observations.

Particulate nitrate photolysis is turned on by default in GEOS-Chem 14.2.0 and later versions. You may disable this
option by editing the line in geoschem_config.yml indicated below:

photolysis:
activate: true
.. preceding sub-sections omitted ...
photolyze_nitrate_aerosol:
activate: true # <=== false deactivates nitrate photolysis
NITs_Jscale_JHNO3: 100.0
NIT_Jscale_JHNO2: 100.0
percent_channel_A_HONO: 66.667
percent_channel_B_NO2: 33.333

You can also edit the other nitrate photolysis parameters by changing the appropriate lines above. See the Shah et al
[2023] reference for more information.

25.5. Photolysis 187

https://acp.copernicus.org/articles/19/6497/2019/
https://doi.org/10.5194/acp-23-1227-2023

GCHP, Release 14.3.0

25.6 Wet deposition

25.6.1 Luo et al 2020 wetdep parameterization

In Luo et al. [2020], the authors introduced an updated wet deposition parameterization, which is now incorporated
into GEOS-Chem as a compile-time option. Follow these steps to activate the Luo et al 2020 wetdep scheme in your
GEOS-Chem simulations.

1. Create a run directory for the type of simulation that you wish to use.

• CAVEAT: Make sure your simulation uses at least one species that can be wet-scavenged.

2. Navigate to the build folder within the run directory.

3. Then type the following:

$ cmake .. -DLUO_WETDEP=y
$ make -j
$ make install

188 Chapter 25. Customize simulations with research options

CHAPTER

TWENTYSIX

UNDERSTAND WHAT ERROR MESSAGES MEAN

In this Guide we provide information about the different types of errors that your GEOS-Chem simulation might en-
counter.

Important: Know the difference between warnings and errors.

Warnings are non-fatal informational messages. Usually you do not have to take any action when encountering a
warning. Nevertheless, you should always try to investigate why the warning was generated in the first place.

Errors are fatal and will halt GEOS-Chem compilation or execution. Looking at the error message will give you some
clues as to why the error occurred.

We strongly encourage that you try to debug the issue using the info both in this Guide and in our Debug GEOS-Chem
and HEMCO errors Guide. Please see our Support Guidelines for more information.

26.1 Where does error output get printed?

GEOS-Chem Classic, GCHP, and HEMCO, like all Linux-based programs, send output to two streams: stdout and
stderr.

Most output will go to the stdout stream, which takes I/O from the Fortran WRITE and PRINT commands. If you run
e.g. GEOS-Chem Classic by just typing the executable name at the Unix prompt:

$./gcclassic

then the stdout stream will be printed to the terminal window. You can also redirect the stdout stream to a log file with
the redirect command:

$./gcclassic > GC.log 2>&1

The 2>&1 tells the bash script to append the stderr stream (noted by 2) to the stdout stream (noted by 1). This will make
sure that any error output also shows up in the log file.

You can also use the Linux tee command, which will send output both to a log file as well as to the terminal window:

$./gcclassic | tee GC.log 2>&1

Note: Please note the following:

1. We have combined HEMCO and GEOS-Chem informational printouts as of GEOS-Chem 14.2.0 and HEMCO
3.7.0. In previous versions, HEMCO informational printouts would have been sent to a separate HEMCO.log file.

189

https://geos-chem.readthedocs.io/en/latest/help-and-reference/SUPPORT.html
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io

GCHP, Release 14.3.0

2. We have disabled most GEOS-Chem and HEMCO informational printouts by default, starting in GEOS-Chem
14.2.0 and HEMCO 3.7.0. These printouts may be restored (e.g. for debugging) by enabling verbose output in
both geoschem_config.yml and HEMCO_Config.rc.

3. GCHP sends output to several log files as well as to the stdout and stderr streams. Please see gchp.readthedocs.io
for more information.

26.2 Compile-time errors

In this section we discuss some compilation warnings that you may encounter when building GEOS-Chem.

26.2.1 Cannot open include file netcdf.inc

error #5102: Cannot open include file 'netcdf.inc'

Problem: The netcdf-fortran library cannot be found.

Solution: Make sure that all software dependencies have been installed and loaded into your Linux environment.

26.2.2 KPP error: Cannot find -lfl

/usr/bin/ld: cannot find -lfl
error: ld returned exit 1 status

Problem:: The Kinetic PreProcessor (KPP) cannot find the flex library, which is one of its dependencies.

Solution: Make sure that all software dependencies have been installed and loaded into your Linux environment.

26.2.3 GNU Fortran internal compiler error

f951: internal compiler error: in ___ at ___

Problem: Compilation halted due to a compiler issue. These types of errors can indicate:

1. An undiagnosed bug in the compiler itself.

2. The inability of the compiler to parse source code adhering to the most recent Fortran language standard.

Solution: Try switching to a newer compiler:

• For GCHP: Use GNU Compiler Collection 9.3 and later.

• For GEOS-Chem Classic and HEMCO: Use GNU Compiler Collection 7.0 and later

190 Chapter 26. Understand what error messages mean

https://gchp.readthedocs.io
https://kpp.readthedocs.io

GCHP, Release 14.3.0

26.3 Run-time errors

26.3.1 Floating invalid or floating-point exception error

forrtl: error (65): floating invalid # Error message from Intel Fortran Compiler

Floating point exception (core dumped) # Error message from GNU Fortran compiler

Problem: An illegal floating-point math operation has occurred. This error can be generated if one of the following
conditions has been encountered:

1. Division by zero

2. Underflow or overflow

3. Square root of a negative number

4. Logarithm of a negative number

5. Negative or Positive Infinity

6. Undefined value(s) used in an equation

Solution: Re-configure GEOS-Chem (or the HEMCO standalone) with the -DCMAKE_RELEASE_TYPE=Debug Cmake
option. This will build in additional error checking that should alert you to where the error is occurring. Once you find
the location of the error, you can take the appropriate steps, such as making sure that the denominator of an expression
never goes to zero, etc.

26.3.2 Forced exit from Rosenbrock

Forced exit from Rosenbrock due to the following error:
--> Step size too small: T + 10*H = T or H < Roundoff
T= 3044.21151383269 and H= 1.281206877135470E-012
INTEGRATE RETURNED ERROR AT: 40 68 1

Forced exit from Rosenbrock due to the following error:
--> Step size too small: T + 10*H = T or H < Roundoff
T= 3044.21151383269 and H= 1.281206877135470E-012
INTEGRATE FAILED TWICE

###
KPP DEBUG OUTPUT
Species concentrations at problem box 40 68 1
###
... printout of species concentrations ...

###
KPP DEBUG OUTPUT
Species concentrations at problem box 40 68 1
###
... printout of reaction rates ...

Problem: The KPP Rosenbrock integrator could not converge to a solution at a particular grid box. This can happen
when:

1. The absolute (ATOL) and/or relative (RTOL) error tolerances need to be refined.

26.3. Run-time errors 191

GCHP, Release 14.3.0

2. A particular species has numerically underflowed or overflowed.

3. A division by zero occurred in the reaction rate computations.

4. A species has been set to a very low value in another operation (e.g. wet scavenging), thus causing the non-
convergence.

5. The initial conditions of the simulation may be non-physical.

6. A data file (meteorology or emissions) may be corrupted.

If the non-convergence only happens once, then GEOS-Chem will revert to prior concentrations and reset the saved
KPP internal timestep (Hnew) to zero before calling the Rosenbrock integrator again. In many instances, this is sufficient
for the chemistry to converge to a soluiton.

In the case that the Rosenbrock integrator fails to converge to a solution twice in a row, all of the concentrations and
reaction rates at the grid box will be printed to stdout and the simulation will terminate.

Solution: Look at the error printout. You will likely notice species concentrations or reaction rates that are extremely
high or low compared to the others. This will give you a clue as to where in GEOS-Chem the error may have occurred.

Try performing some short test simulations, turning each operation (e.g. transport, PBL mixing, convection, etc).
off one at a time. This should isolate the location of the error. Make sure to turn on verbose output in both
geoschem_config.yml and HEMCO_Config.rc; this will send additional printout to the stdout stream. The clue
to finding the error may become obvious by looking at this output.

Check your restart file to make sure that the initial concentrations make sense. For certain simulations, using initial
conditions from a simulation that has been sufficiently spun-up makes a difference.

Use a netCDF file viewer like ncview to open the meteorology files on the day that the error occurred. If a file does
not open properly, it is probably corrupted. If you suspect that the file may have been corrupted during download, then
download the file again from its original source. If this still does not fix the error, then the file may have been corrupted
at its source. Please open a new Github issue to alert the GEOS-Chem Support Team.

More about KPP error tolerances

The error tolerances are set in the following locations:

1. fullchem mechanism: In routine Do_FlexChem (located in in GeosCore/fullchem_mod.F90).

2. Hg mechanism: In routine ChemMercury (located in GeosCore/mercury_mod.F90).

For example, in the fullchem mechanism, ATOL and RTOL are defined as:

!%%%%% CONVERGENCE CRITERIA %%%%%

! Absolute tolerance
ATOL = 1e-2_dp

! Relative tolerance
! Changed to 0.5e-3 to avoid integrate errors by halogen chemistry
! -- Becky Alexander & Bob Yantosca (24 Jan 2023)
RTOL = 0.5e-3_dp

Convergence errors can occur because the system arrives to a state too far from the truth to be able to converge. By
tightening (i.e. decreasing) the tolerances, you ensure that the system stays closer to the truth at every time step. Then,
the problematic time steps will start the chemistry with a system closer to the true state, enabling the chemistry to
converge.

192 Chapter 26. Understand what error messages mean

GCHP, Release 14.3.0

CAVEAT: If the first time step of chemistry cannot converge, tightening the tolerances wouldn’t work but loosening the
tolerance would. So you might have to experiment a little bit in order to find the proper settings for ATOL and RTOL for
your specific mechanism.

26.3.3 HEMCO Error: Cannot find field

HEMCO Error: Cannot find field ___. Please check the name in the config file.

Problem: A GEOS-Chem Classic or HEMCO standalone simulation halts because HEMCO cannot find a certain input
field.

Solution: Most of the time, this error indicates that a species is missing from the GEOS-Chem restart file. By default,
the GEOS-Chem restart file (entry SPC_ in HEMCO_Config.rc) uses time cycle flag EFYO. This setting tells HEMCO
to halt if a species does not have an initial condition field contained in the GEOS-Chem restart file. Changing this time
cycle flag to CYS will allow the simulation to proceed. In this case, species will be given a default background initial
concentration, and the simulation will be allowed to proceed.

26.3.4 HEMCO Error: Cannot find file for current simulation time

HEMCO ERROR: Cannot find file for current simulation time:
./Restarts/GEOSChem.Restart.17120701_0000z.nc4 - Cannot get field SPC_NO.
Please check file name and time (incl. time range flag) in the config. file

Problem: HEMCO tried to read data from a file but could not find the time slice requested in HEMCO_Config.rc.

Solution: Make sure that the file is at the path specified in HEMCO_Config.rc. HEMCO will try to look back in time
starting with the current year and going all the way back to the year 1712 or 1713. So if you see 1712 or 1713 in the
error message, that is a tip-off that the file is missing.

26.3.5 HEMCO Run Error

===
GEOS-CHEM ERROR: HCO_RUN

HEMCO ERROR: Please check the HEMCO log file for error messages!

STOP at HCOI_GC_RUN (hcoi_gc_main_mod.F90)
===

Problem: A GEOS-Chem simulation stopped in the HCOI_GC_RUN routine with an error message similar to that shown
above.

Solution: Look at the output that was written to the stdout and stderr streams. Error messages containing HCO originate
in HEMCO.

26.3. Run-time errors 193

https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/restart-files-gc.html/restart-files-gc.html
https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/hemco-config.html

GCHP, Release 14.3.0

26.3.6 HEMCO time stamps may be wrong

HEMCO WARNING: ncdf reference year is prior to 1901 - time stamps may be wrong!
--> LOCATION: GET_TIMEIDX (hco_read_std_mod.F90)

Problem: HEMCO reads the files but gives zero emissions and shows the error listed above.

Solution: Do the following:

1. Reset the reference datetime in the netCDF file so that it is after 1901.

2. Make sure that the time:calendar string is either standard or gregorian. GEOS-Chem Classic, GCHP, and
HEMCO can only read data placed on calendars with leap years.

GCST member Lizzie Lundgren writes:

This HEMCO error occurs if the reference time for the netCDF file time dimension is prior to 1901. If you
do ncdump –c filename you will be able to see the metadata for the time dimension as well as the time
variable values. The time units should include the reference date.

You can get around this issue by changing the reference time within the file. You can do this with cdo
(Climate Data Operators) using the setreftime command.

Here is a bash script example by GCST member Melissa Sulprizio that updates the calendar and reference
time for all files ending in *.nc within a directory. This script was made for a user who ran into this issue.
into the same issue. In that case the first file was for Jan 1, 1950, so that was made the new reference time.
I would recommend doing the same for your dataset so that the first time variable value would be 0. This
script also compresses the file which we recommend doing.

#!/bin/bash

for file in *nc; do
echo "Processing $file"

Make sure te calendar is "standard" and not e.g. 360 days
cdo setcalendar,standard $file tmp.nc
mv tmp.nc $file

Set file reference time to 1950-01-01 at 0z
cdo setreftime,1950-01-01,0 $file tmp.nc
mv tmp.nc $file

Compress the file
nccopy -d1 -c "time/1" $file tmp.nc
mv tmp.nc $file

done

After you update the file you can then again do ncdump –c filename to check the time dimension. For
the case above it looks like this after processing.

double time(time) ;
time:standard_name = "time" ;
time:long_name = "time" ;
time:bounds = "time_bnds" ;
time:units = "days since 1950-01-01 00:00:00" ;
time:calendar = "standard" ;
. . .

(continues on next page)

194 Chapter 26. Understand what error messages mean

https://github.com/lizziel
https://github.com/msulprizio

GCHP, Release 14.3.0

(continued from previous page)

time = 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 396, 424,
455, 485, 516, 546, 577, 608, 638, 669, 699, 730, 761, 790, 821, 851,``
882, 912, 943, 974, 1004, 1035, 1065, 1096, 1127, 1155, 1186, 1216, 1247␣

→˓. . .

26.3.7 Negative tracer found in WETDEP

WETDEP: ERROR at 40 67 1 for species 2 in area WASHOUT: at surface
LS : T
PDOWN : 0.0000000000000000
QQ : 0.0000000000000000
ALPHA : 0.0000000000000000
ALPHA2 : 0.0000000000000000
RAINFRAC : 0.0000000000000000
WASHFRAC : 0.0000000000000000
MASS_WASH : 0.0000000000000000
MASS_NOWASH : 0.0000000000000000
WETLOSS : NaN
GAINED : 0.0000000000000000
LOST : 0.0000000000000000
DSpc(NW,:) : NaN 6.0358243778561746E-013 6.
→˓5871997362336500E-013 7.2710915872550685E-013 8.0185772698102585E-013 8.
→˓7883682997147595E-013 9.6396466805517407E-013 1.0574719517340253E-012 1.
→˓1617302070198606E-012 1.2976219851862141E-012 1.4347568254382824E-012 1.
→˓5772212240871896E-012 1.7071657565802178E-012 1.8443377617027378E-012 1.
→˓9982208320328261E-012 2.1567932874822908E-012 2.2591568422224307E-012 2.
→˓2208301198704935E-012 1.8475974519883714E-012 1.7716069173018996E-013 1.
→˓7714395985520433E-013 1.7633649101242403E-013 1.6668529114369137E-013 1.
→˓3548045738669223E-013 5.1061710020314286E-014 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000 0.
→˓0000000000000000 0.0000000000000000 0.0000000000000000
Spc(I,J,:N) : NaN 3.5108056785061143E-009 3.
→˓8363969256742307E-009 3.6615166033026556E-009 3.6780394914242783E-009 4.
→˓1462343168230006E-009 4.7319942271993657E-009 5.1961472823088513E-009 5.
→˓4030830279477525E-009 5.5736845790195336E-009 5.7139596145766606E-009 5.
→˓8629212873139874E-009 7.9742789235773213E-009 1.0334311421916619E-008 1.
→˓0816150360971255E-008 1.1168715310744298E-008 1.1534959217017146E-008 1.
→˓1809950282570185E-008 1.7969626885629474E-008 1.7430760762446019E-008 1.
→˓7477810715818748E-008 1.7967321756900857E-008 1.8683742574601477E-008 1.
→˓9309929368816065E-008 2.0262386892450682E-008 2.0489969814921647E-008 1.
→˓9961590106306151E-008 2.2859284477873924E-008 1.3161046290246557E-008 6.
→˓5857053651000387E-009 2.7535806161296159E-009 1.2708780077337107E-009 3.
→˓6557775667039418E-010 6.1984105316417057E-011 2.6665694620973736E-011 8.
→˓7599157145440813E-012 4.8009375158768866E-012 1.0086435318729046E-012 1.

(continues on next page)

26.3. Run-time errors 195

GCHP, Release 14.3.0

(continued from previous page)

→˓3493529625353547E-013 1.6403790023674963E-014 2.7417226109948757E-015 4.
→˓2031825835582592E-014 2.3778709382809943E-013 8.3223532851684382E-013 4.
→˓5695049346098890E-012 6.9911523125704209E-012 2.5076669266356582E-012
===
===
GEOS-Chem ERROR: Error encountered in wet deposition!
-> at SAFETY (in module GeosCore/wetscav_mod.F90)
===

===
GEOS-Chem ERROR: Error encountered in "Safety"!
-> at Do_Washout_at_Sfc (in module GeosCore/wetscav_mod.F90)
===

===
GEOS-Chem ERROR:
-> at WetDep (in module GeosCore/wetscav_mod.F90)
===

===
GEOS-Chem ERROR: Error encountered in "Wetdep"!
-> at Do_WetDep (in module GeosCore/wetscav_mod.F90)
===

===
GEOS-CHEM ERROR: Error encountered in "Do_WetDep"!
STOP at -> at GEOS-Chem (in GeosCore/main.F90)
===

- CLEANUP: deallocating arrays now...

Problem: A GEOS-Chem simulation has encountered either negative or NaN (not-a-number) concentrations in the wet
deposition module. This can indicate the following:

1. The wet deposition routines have removed too much soluble species from within a grid box.

2. Another operation (e.g. transport, convection, etc.) has removed too much soluble species from within a grid
box.

3. A corrupted or incorrect meteorological input has caused too much rainout or washout to occur within a grid box
(which leads to conditions 1 and/or 2 above).

4. An array-out-of-bounds error has corrupted a variable that is used in wet depoosition.

5. For nested-grid simulations, the transport timestep may be too large, thus resulting in grid boxes with zero or
negative concentrations.

Solution: Re-configure GEOS-Chem and/or HEMCO with the -DCMAKE_RELEASE_TYPE=Debug CMake option. This
adds in additional error checks that may help you find where the error occurs.

Also try adding some PRINT* statements before and after the call to DO_WETDEP to check the concentrations entering
and leaving the wetdep module. That might give you an idea of where the concetnrations are going negative.

196 Chapter 26. Understand what error messages mean

GCHP, Release 14.3.0

26.3.8 Permission denied error

geoschem.run: Permission denied

Problem: The script geoschem.run is not executable.

Solution: Change the permission of the script with:

$ chmod 755 geoschem.run

26.3.9 Excessive fall velocity error

GEOS-CHEM ERROR: Excessive fall velocity?
STOP at CALC_FALLVEL, UCX_mod

Problem: The fall velocity (in stratopsheric chemistry routine Calc_FallVel in module GeosCore/ucx_mod.F90)
exceeds 10 m/s. This error will most often occur in GEOS-Chem Classic nested-grid simulations.

Solution: Reduce the default timestep settings in geoschem_config.yml. You may need to use 300 seconds (trans-
port) and 600 seconds (chemistry) or even smaller depending on the horizontal resolution of your simulation.

26.4 File I/O errors

26.4.1 List-directed I/O syntax error

Error message from GNU Fortran
At line NNNN of file filename.F90
Fortran runtime error: Bad real number|integer number|character in item X of list input

Error message from Intel Fortran
forrtl: severe (59): list-directed I/O syntax error, unit -5, file Internal List-
→˓Directed Read

Problem: This error indicates that the wrong type of data was read from a text file. This can happen when:

1. Numeric input is expected but character input was read from disk (or vice-versa);

2. A READ statement in your code has been omitted or deleted.

Solution: Check configuration files (geoschem_config.yml, HEMCO_Config.rc, HEMCO_Diagn.rc, etc.) for syn-
tax errors and omissions that could be causing this error.

26.4.2 Nf_Def_Var: can not define variable

!!

Nf_Def_var: can not define variable: ____

!!

(continues on next page)

26.4. File I/O errors 197

GCHP, Release 14.3.0

(continued from previous page)

Code stopped from DO_ERR_OUT (in module NcdfUtil/m_do_err_out.F90)

This is an error that was encountered in one of the netCDF I/O modules,
which indicates an error in writing to or reading from a netCDF file!

!!

Problem: GEOS-Chem or HEMCO could not write a variable to a netCDF file. This error may be caused by:

1. The netCDF file is write-protected and cannot be overwritten.

2. The path to the netCDF file is incorrect (e.g. directory does not exist).

3. The netCDF file already contains a variable with the same name.

Solution: Try the following:

1. If GEOS-Chem or HEMCO will be overwriting any existing netCDF files (which can often happen during testing
& development), make sure that the file and containing directory are not write-protected.

2. Make sure that the path where you intend to write the netCDF file exists.

3. Check your HISTORY.rc and HEMCO_Diagn.rc diagnostic configuration files to make sure that you are not
writing more than one diagnostic variable with the same name.

26.4.3 NetCDF: HDF Error

NetCDF: HDF error

Problem: The netCDF library routines in GEOS-Chem or HEMCO cannot read a netCDF file. The error is occurring
in the HDF5 library (upon which netCDF depends). This may indicate a corrupted or incomplete netCDF file.

Solution: Try re-downloading the file from the WashU data portal. Downloading a fresh copy of the file is often
sufficient to fix this type of issue. If the error persists, please open a new GitHub issue to alert the GEOS-Chem
Support team, as the corruption may have occured at the original source of te data.

26.5 Segmentation faults and similar errors

SIGSEGV, segmentation fault occurred

Problem: GEOS-Chem or HEMCO tried to access an invalid memory location.

Solution: See the sections below for ways to debug segmentation fault errors.

198 Chapter 26. Understand what error messages mean

https://geoschemdata.wustl.edu
http://stackoverflow.com/questions/2346806/what-is-segmentation-fault

GCHP, Release 14.3.0

26.5.1 Array-out-of-bounds error

Subscript #N of the array THISARRAY has value X which is less than the lower bound of Y

or

Subscript #N of the array THISARRAY has value A which is greater than the upper bound of␣
→˓B

Problem: An array index variable refers to an element that lies outside of the array boundaries.

Solution: Reconfigure GEOS-Chem with the following options:

$ cd /path/to/build # Your GEOS-Chem or HEMCO build directory
$ cmake . -DCMAKE_BUILD_TYPE=Debug

This will enable several debugging options, including checking for array operations indices that going out of bounds.
You wil get an error message similar to those shown above.

Use the grep command to search for all instances of the array (in this example, THISARRAY) in each source code folder:

grep -i THISARRAY *.F90 # -i means ignore uppercase/lowercase distinction

This should let you quickly locate the issue. Depending on the compiler that is used, you might also get a routine name
and line number from the error output.

26.5.2 Segmentation fault encountered after TPCORE initialization

NASA-GSFC Tracer Transport Module successfully initialized

Problem: A GEOS-Chem simulation dies right after you see this text.

Note: Starting in GEOS-Chem Classic 14.1.0, the text above will only be printed if you have activated verbose output
in the geoschem_config.yml configuration file.

Solution: Increase the amount of stack memory available to GEOS-Chem and HEMCO. Please follow this link for
detailed instructions.

26.5.3 Invalid memory access

severe (174): SIGSEGV, segmentation fault occurred
This message indicates that the program attempted an invalid memory reference.
Check the program for possible errors.

Problem: GEOS-Chem or HEMCO code tried to read data from an invalid memory location. This can happen when
data is being read from a file into an array, but the array is too small to hold all the data.

Solution: Use a debugger (like gdb) to try to diagnose the situation. Also try increasing the dimensions of the array
that you suspect might be too small.

26.5. Segmentation faults and similar errors 199

https://geos-chem.readthedocs.io/en/latest/gcclassic-user-guide/login-env-parallel.html

GCHP, Release 14.3.0

26.5.4 Stack overflow

severe (174): SIGSEGV, possible program stack overflow occurred
Program requirements exceed current stacksize resource limit.

Problem: GEOS-Chem and/or HEMCO is using more stack memory than is currently available to the system. Stack
memory is a reserved portion of the memory structure where short-lived variables are stored, such as:

1. Variables that are local to a given subroutine

2. Variables that are NOT globally saved

3. Variables that are NOT declared as an ALLOCATABLE array

4. Variables that are NOT declared as a POINTER variable or array

5. Variables that are included in an !$OMP PRIVATE or !$OMP THREADPRIVATE

Solution: Max out the amount of stack memory that is available to GEOS-Chem and HEMCO. See this section for
instructions.

26.6 Less commmon errors

The errors listed below, which occur infrequently, are related to invalid memory operations. These can especially occur
with POINTER-based variables.

26.6.1 Bus Error

Problem: GEOS-Chem or HEMCO is trying to reference memory that cannot possibly be there. The website Stack-
Overflow.com has a definition of bus error and how it differs from a segmentation fault.

Solution: A bus error may occur when you call a subroutine with too many arguments. Check subroutine definitions
and subroutine calls to make sure the correct number of arguments are passed.

26.6.2 Double free or corruption

*** glibc detected *** PROGRAM_NAME: double free or corruption (out): ____ ***

Problem: The following error is not common, but can occur under some circumstances. Usually this means one of the
following has occurred:

1. You are deallocating the same variable more than once.

2. You are deallocating a variable that wasn’t allocated, or that has already been deallocated.

Please see this link for more details.

Solution: Try setting all deleted pointers to NULL().

You can also use a debugger like gdb, which will show you a backtrace from your crash. This will contain information
about in which routine and line number the code crashed, and what other routines were called before the crash happened.

Remember these three basic rules when working with POINTER-based variables:

1. Set pointer to NULL after free.

2. Check for NULL before freeing.

200 Chapter 26. Understand what error messages mean

http://geos-chem.readthedocs.io/en/latest/getting-started/login-env-parallel.html
http://stackoverflow.com/questions/212466/what-is-a-bus-errornice
http://stackoverflow.com/questions/2902064/how-to-track-down-a-double-free-or-corruption-error-in-c-with-gdb

GCHP, Release 14.3.0

3. Initialize pointer to NULL in the start.

Using these rules helps to prevent this type of error.

Also note, you may see this error when a software library required by GEOS-Chem and/or HEMCO is not (e.g. netcdf
or netcdf-fortran has not been installed. GEOS-Chem and/or HEMCO may be making calls to the missing library,
which results in the error. If this is the case, the solution would be to install all required libraries.

26.6.3 Dwarf subprogram entry error

Dwarf subprogram entry L_ROUTINE-NAME__LINE-NUMBER__par_loop2_2_576 has high_pc < low_pc.
This warning will not be repeated for other occurrences.

Problem: GEOS-Chem or HEMCO code tried to use a POINTER-based variable that is unassociated (i.e. not pointing
to any other variable or memory) from within an OpenMP parallel loop.

This error can happen when a POINTER-based variable is set to NULL() where it is declared:

TYPE(Species), POINTER :: ThisSpc => NULL()

The above declaration causes use pointer variable ThisSpc to be implicitly declared with the SAVE attribute. This
causes a segmentation fault, because all pointers used within an OpenMP parallel region must be associated and nullified
on the same thread.

Solution: Make sure that any POINTER-based variables (such as ThisSpc in this example) point to their target and are
nullified within the same OpenMP parallel loop.

TYPE(Species), POINTER :: ThisSpc ! Do not set to NULL() here!!!

... etc ...

!$OMP PARALLEL DO(
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(I, J, L, N, ThisSpc, ...)
DO N = 1, nSpecies
DO L = 1, NZ
DO J = 1, NY
DO I = 1, NX

... etc ...

! Point to species database entry
ThisSpc => State_Chm%Species(N)%Info

... etc ...

! Free pointer at end of loop
ThisSpc => NULL()

ENDDO
ENDDO
ENDDO
ENDDO

26.6. Less commmon errors 201

GCHP, Release 14.3.0

Note that you must also add POINTER-based variables (such as ThisSpc) to the !$OMP PRIVATE clause for the parallel
loop.

For more information about this type of error, please see this article.

26.6.4 Free: invalid size

Error in PROGRAM_NAME free(): invalid size: 0x00000000 0662e090

Problem: This error is not common. It can happen when:

1. You are trying to free a pointer that wasn’t allocated.

2. You are trying to delete an object that wasn’t created.

3. You may be trying to nullify or deallocate an object more than once.

4. You may be overflowing a buffer.

5. You may be writing to memory that you shouldn’t be writing to.

Solution: Any number of programming errors can cause this problem. You need to use a debugger (such as gdb),
get a backtrace, and see what your program is doing when the error occurs. If that fails and you determine you have
corrupted the memory at some previous point in time, you may be in for some painful debugging (it may not be too
painful if the project is small enough that you can tackle it piece by piece).

See this post on StackOverFlow for more information.

26.6.5 Munmap_chunk: invalid pointer

** glibc detected *** PROGRAM_NAME: munmap_chunk(): invalid pointer: 0x00000000059aac30␣
→˓***

Problem: This is not a common error, but can happen if you deallocate or nullify a POINTER-based variable that has
already been deallocated or modified.

Solution: Use a debugger (like gdb) to see where in GEOS-Chem or HEMCO the error occurs. You will likely have
to remove a duplicate DEALLOCATE or => NULL() statement. See this link for more information.

26.6.6 Out of memory asking for NNNNN

Fatal compilation error: Out of memory asking for 36864.

Problem: This error may be caused by the datasize limit not being maxed out in your Linux login environment. For
more informatin, see this link for more information.

Solution: Use this command to check the status of the datasize limit:

$ ulimit -d
unlimited

If the result of this command is not unlimited, then set it to unlimited with this command:

$ ulimit -d unlimited

202 Chapter 26. Understand what error messages mean

http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html#4
http://stackoverflow.com/question/error-free-invalid-next-size-fast
http://stackoverflow.com/questions/6199729/how-to-solve-munmap-chunk-invalid-pointer-error-in-c
http://software.intel.com/en-us/forums/topic/268149
http://software.intel.com/en-us/forums/topic/268149

GCHP, Release 14.3.0

Note: The two most important limits for GEOS-Chem and HEMCO are datasize and stacksize These should
both be set to unlimited.

26.6. Less commmon errors 203

GCHP, Release 14.3.0

204 Chapter 26. Understand what error messages mean

CHAPTER

TWENTYSEVEN

DEBUG GEOS-CHEM AND HEMCO ERRORS

If your GEOS-Chem or HEMCO simulation dies unexpectedly with an error or takes much longer to execute than it should,
the most important thing is to try to isolate the source of the error or bottleneck right away. Below are some debugging
tips that you can use.

27.1 Check if a solution has been posted to Github

We have migrated support requests from the GEOS-Chem wiki to Github issues. A quick search of Github issues
(both open and closed) might reveal the answer to your question or provide a solution to your problem.

You should also feel free to open a new issue at one of these Github links:

• GEOS-Chem Classic new issues page

• GCHP new issues page

• HEMCO new issues page

If you are new to Github, we recommend viewing our Github tutorial videos at our GEOS-Chem Youtube site.

27.2 Check if your computational environment is configured properly

Many GEOS-Chem and HEMCO errors occur due to improper configuration settings (i.e. missing libraries, incorrectly-
specified environment variables, etc.) in your computational environment. Take a moment and refer back to these
manual pages (on ReadTheDocs) for information on configuring your environment:

• GEOS-Chem Classic manual

• GCHP manual

• HEMCO manual

27.3 Check any code modifications that you have added

If you have made modifications to a “fresh out-of-the-box” GEOS-Chem or HEMCO version, look over your code edits to
search for sources of potential error.

You can also use Git to revert to the last stable version, which is always in the main branch.

205

https://wiki.geos-chem.org
https://github.com/geoschem/geos-chem/issues/new/choose/
https://github.com/geoschem/GCHP/issues/new/choose
https://github.com/geoschem/HEMCO/issues/new/choose
https://youtube.com/c/geoschem
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io

GCHP, Release 14.3.0

27.4 Check if your runs exceeded time or memory limits

If you are running GEOS-Chem or HEMCO on a shared computer system, you will probably have to use a job scheduler
(such as SLURM) to submit your jobs to a computational queue. You should be aware of the run time and memory limits
for each of the queues on your system.

If your job uses more memory or run time than the computational queue allows, it can be cancelled by the scheduler.
You will usually get an error message printed out to the stderr stream, and maybe also an email stating that the run was
terminated. Be sure to check all of the log files created by your jobs for such error messages.

To solve this issue, try submitting your GEOS-Chem or HEMCO simulations to a queue with larger run-time and memory
limits. You can also try splitting up your long simulations into several smaller stages (e.g. monthly) that take less time
to run to completion.

27.5 Send debug printout to the log files

If your GEOS-Chem simulation stopped with an error, but you cannot tell where, turn on the the debug_printout
option. This is found in the Simulation Settings section of geoschem_config.yml:

#==
Simulation settings
#==
simulation:
name: fullchem
start_date: [20190701, 000000]
end_date: [20190801, 000000]
root_data_dir: /path/to/ExtData
met_field: MERRA2
species_database_file: ./species_database.yml
debug_printout: false # <---- set this to true
use_gcclassic_timers: false

This will send additional output to the GEOS-Chem log file, which may help you to determine where the simulation
stopped.

If your HEMCO simulation stopped with an error, turn on debug printout by editing the Verbose and Warnings settings
at the top of the HEMCO_Config.rc configuration file:

###
BEGIN SECTION SETTINGS
###

ROOT: /path/to/ExtData/HEMCO
METDIR: MERRA2
GCAP2SCENARIO: none
GCAP2VERTRES: none
Logfile: HEMCO.log
DiagnFile: HEMCO_Diagn.rc
DiagnPrefix: ./OutputDir/HEMCO_diagnostics
DiagnFreq: Monthly
Wildcard: *
Separator: /
Unit tolerance: 1

(continues on next page)

206 Chapter 27. Debug GEOS-Chem and HEMCO errors

GCHP, Release 14.3.0

(continued from previous page)

Negative values: 0
Only unitless scale factors: false
Verbose: 0 # <---- set this to 3
Warnings: 1 # <---- set this to 3

Both Verbose and Warnings settings can have values from 0 to 3. The higher the number, the more information will
be printed out to the HEMCO.log file. A value of 0 disables debug printout.

Having this extra debug printout in your log file output may provide insight as to where your simulation is halting.

27.6 Look at the traceback output

An error traceback will be printed out whenever a GEOS-Chem or HEMCO simulation halts with an error. This is a list
of routines that were called when the error occurred.

An sample error traceback is shown here:

forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source
gcclassic 0000000000C82023 Unknown Unknown Unknown
libpthread-2.17.s 00002AACE8015630 Unknown Unknown Unknown
gcclassic 000000000095935E error_mod_mp_erro 437 error_mod.F90
gcclassic 000000000040ABB7 MAIN__ 422 main.F90
gcclassic 0000000000406B92 Unknown Unknown Unknown
libc-2.17.so 00002AACE8244555 __libc_start_main Unknown Unknown
gcclassic 0000000000406AA9 Unknown Unknown Unknown

The top line with a valid routine name and line number printed is the routine that exited with an error (error_mod.F90,
line 437). You might also have to look at the other listed files as well to get some more information about the error (e.g.
main.F90, line 422).

27.7 Identify whether the error happens consistently

If your GEOS-Chem or HEMCO error always happens at the same model date and time, this could indicate corrupted
meteorology or emissions input data files. In this case, you may be able to fix the issue simply by re-downloading the
files to your disk space.

If the error happened only once, it could be caused by a network problem or other such transient condition.

27.8 Isolate the error to a particular operation

If you are not sure where a GEOS-Chem error is occurring, turn off operations (such as transport, chemistry, dry depo-
sition, etc.) one at a time in the geoschem_config.yml configuration file, and rerun your simulation.

Similarly, if you are debugging a HEMCO error, turn off different emissions inventories and extensions one at a time in
the HEMCO_Config.rc file, and rerun your simulation.

Repeating this process should eventually lead you to the source of the error.

27.6. Look at the traceback output 207

GCHP, Release 14.3.0

27.9 Compile with debugging options

You can compile GEOS-Chem or HEMCO in debug mode. This will activate several additional error run-time error checks
(such as looking for assignments that go outside of array bounds or floating point math errors) that can give you more
insight as to where your simulation is dying.

Configure your code for debug mode with the -DCMAKE_RELEASE_TYPE=Debug option. From your run directory, type
these commands:

cd build
cmake ../CodeDir -DCMAKE_RELEASE_TYPE=Debug -DRUNDIR=..
make -j
make -j install
cd ..

Attention: Compiling in debug mode will add a significant amount of computational overhead to your simula-
tion. Therefore, we recommend to activate these additional error checks only in short simulations and not in long
production runs.

27.10 Use a debugger

You can save yourself a lot of time and hassle by using a debugger such as gdb (the GNU debugger). With a debugger
you can:

• Examine data when a program stops

• Navigate the stack when a program stops

• Set break points

To run GEOS-Chem or HEMCO in the gdb debugger, you should first compile in debug mode. This will turn on the -g
compiler flag (which tells the compiler to generate symbolic information for debugging) and the -O0 compiler flag
(which shuts off all optimizations. Once the executable has been created, type one of the following commands, which
will start gdb:

$ gdb gcclassic # for GEOS-Chem Classic
$ gdb gchp # for GCHP
$ gdb hemco # for HEMCO standalone

At the gdb prompt, type one of these commands:

(gdb) run # for GEOS-Chem Classic or GCHP
(gdb) run HEMCO_sa_Config.rc # for HEMCO standalone

With gdb, you can also go directly to the point of the error without having to re-run GEOS-Chem or HEMCO. When
your GEOS-Chem or HEMCO simulation dies, it will create a corefile such as core.12345. The 12345 refers to the
process ID assigned to your executable by the operating system; this number is different for each running process on
your system.

Typing one of these commands:

208 Chapter 27. Debug GEOS-Chem and HEMCO errors

GCHP, Release 14.3.0

$ gdb gcclassic core.12345 # for GEOS-Chem Classic
$ gdb gchp core.12345 # for GCHP
$ gdb hemco_standalone core.12345 # for HEMCO standalone

will open gdb and bring you immediately to the point of the error. If you then type at the (gdb) prompt:

(gdb) where

You will get a traceback listing.

To exit gdb, type quit.

27.11 Print it out if you are in doubt!

Add print*, statements to write values of variables in the area of the code where you suspect the error is occurring.
Also add the call flush(6) statement to flush the output to the screen and/or log file immediately after printing.
Maybe you will see something wrong in the output.

You can often detect numerical errors by adding debugging print statements into your source code:

1. Use MINVAL and MAXVAL functions to get the minimum and maximum values of an array:

PRINT*, '### Min, Max: ', MINVAL(ARRAY), MAXVAL(ARRAY)
CALL FLUSH(6)

2. Use the SUM function to check the sum of an array:

PRINT*, '### Sum of X : ', SUM(ARRAY)
CALL FLUSH(6)

27.12 Use the brute-force method when all else fails

If the bug is difficult to locate, then comment out a large section of code and run your GEOS-Chem or HEMCO simulation
again. If the error does not occur, then uncomment some more code and run again. Repeat the process until you find the
location of the error. The brute force method may be tedious, but it will usually lead you to the source of the problem.

27.13 Identify poorly-performing code with a profiler

If you think your GEOS-Chem or HEMCO simulation is taking too long to run, consider using profiling tools to generate
a list of the time that is spent in each routine. This can help you identify badly written and/or poorly-parallelized code.
For more information, please see our Profiling GEOS-Chem wiki page.

27.11. Print it out if you are in doubt! 209

https://wiki.geos-chem.org/Profiling_GEOS-Chem

GCHP, Release 14.3.0

210 Chapter 27. Debug GEOS-Chem and HEMCO errors

CHAPTER

TWENTYEIGHT

VIEW GEOS-CHEM SPECIES PROPERTIES

Properties for GEOS-Chem species are stored in the GEOS-Chem Species Database, which is a YAML file
(species_database.yml) that is placed into each GEOS-Chem run directory.

View species properties from the current stable GEOS-Chem version:

• View properties for most GEOS-Chem species

• View properties for APM microphysics species

• View properties for TOMAS microphysics species

• View properties for Hg simulation species

28.1 Species properties defined

The following sections contain a detailed description of GEOS-Chem species properties.

28.1.1 Required default properties

All GEOS-Chem species should have these properties defined:

Name:
FullName: full name of the species
Formula: chemical formula of the species
MW_g: molecular weight of the species in grams

EITHER Is_Gas: true
OR Is_Aerosol: true

All other properties are species-dependent. You may omit properties that do not apply to a given species. GEOS-
Chem will assign a “missing value” (e.g. false, -999, -999.0, or, UNKNOWN) to these properties when it reads the
species_database.yml file from disk.

211

https://yaml.org
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database.yml
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_apm.yml
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_tomas.yml
https://github.com/geoschem/geos-chem/blob/main/run/shared/species_database_hg.yml

GCHP, Release 14.3.0

28.1.2 Identification

Name

Species short name (e.g. ISOP).

Formula

Species chemical formula (e.g. CH2=C(CH3)CH=CH2). This is used to define the species’ formula attribute,
which gets written to GEOS-Chem diagnostic files and restart files.

FullName

Species long name (e.g. Isoprene). This is used to define the species’ long_name attribute, which gets written
to GEOS-Chem diagnostic files and restart files.

Is_Aerosol

Indicates that the species is an aerosol (true), or isn’t (false).

Is_Advected

Indicates that the species is advected (true), or isn’t (false).

Is_DryAlt

Indicates that dry deposition diagnostic quantities for the species can be archived at a specified altitude above the
surface (true), or can’t (false).

Note: The Is_DryAlt flag only applies to species O3 and HNO3.

Is_DryDep

Indicates that the species is dry deposited (true), or isn’t (false).

Is_HygroGrowth

Indicates that the species is an aerosol that is capable of hygroscopic growth (true), or isn’t (false).

Is_Gas

Indicates that the species is a gas (true), or isn’t (false).

Is_Hg0

Indicates that the species is elemental mercury (true), or isn’t (false).

Is_Hg2

Indicates that the species is a mercury compound with oxidation state +2 (true), or isn’t (false).

Is_HgP

Indicates that the species is a particulate mercury compound (true), or isn’t (false).

Is_Photolysis

Indicates that the species is photolyzed (true), or isn’t (false).

Is_RadioNuclide

Indicates that the species is a radionuclide (true), or isn’t (false).

212 Chapter 28. View GEOS-Chem species properties

GCHP, Release 14.3.0

28.1.3 Physical properties

Density

Density (𝑘𝑔 𝑚−3) of the species. Typically defined only for aerosols.

Henry_K0

Henry’s law solubility constant (𝑀 𝑎𝑡𝑚−1), used by the default wet depositon scheme.

Henry_K0_Luo

Henry’s law solubility constant (𝑀 𝑎𝑡𝑚−1) used by the Luo et al. [2020] wet deposition scheme.

Henry_CR

Henry’s law volatility constant (𝐾) used by the default wet deposition scheme.

Henry_CR_Luo

Henry’s law volatility constant (𝐾) used by the Luo et al. [2020] wet deposition scheme.

Henry_pKa

Henry’s Law pH correction factor.

MW_g

Molecular weight (𝑔 𝑚𝑜𝑙−1) of the species.

Note: Some aerosol-phase species (such as MONITA and IONITA) are given the molar mass corresponding to
the number of nitrogens that they carry, whereas gas-phase species (MONITS and MONITU) get the full molar
mass of the compounds that they represent. This treatment has its origins in J. Fisher et al [2016].

Radius

Radius (𝑚) of the species. Typically defined only for aerosols.

28.1.4 Dry deposition properties

DD_AeroDryDep

Indicates that dry deposition should consider hygroscopic growth for this species (true), or shouldn’t (false).

Note: DD_AeroDryDep is only defined for sea salt aerosols.

DD_DustDryDep

Indicates that dry deposition should exclude hygroscopic growth for this species (true), or shouldn’t (false).

Note: DD_DustDryDep is only defined for mineral dust aerosols.

DD_DvzAerSnow

Specifies the dry deposition velocity (𝑐𝑚 𝑠−1) over ice and snow for certain aerosol species. Typically,
DD_DvzAerSnow = 0.03.

DD_DvzAerSnow_Luo

Specifies the dry deposition velocity (𝑐𝑚 𝑠−1) over ice and snow for certain aerosol species.

Note: DD_DvzAerSnow_Luo is only used when the Luo et al. [2020] wet scavenging scheme is activated.

28.1. Species properties defined 213

https://acp.copernicus.org/articles/16/5969/2016/acp-16-5969-2016.pdf

GCHP, Release 14.3.0

DD_DvzMinVal

Specfies minimum dry deposition velocities (𝑐𝑚 𝑠−1) for sulfate species (SO2, SO4, MSA, NH3, NH4, NIT). This
follows the methodology of the GOCART model.

DD_DvzMinVal is defined as a two-element vector:

• DD_DvzMinVal(1) sets a minimum dry deposition velocity onto snow and ice.

• DD_DvzMinVal(2) sets a minimum dry deposition velocity over land.

DD_Hstar_Old

Specifies the Henry’s law constant (𝐾0) that is used in dry deposition. This will be used to assign the HSTAR
variable in the GEOS-Chem dry deposition module.

Note: The value of the DD_Hstar_old parameter was tuned for each species so that the dry deposition velocity
would match observations.

DD_F0

Specifies the reactivity factor for oxidation of biological substances in dry deposition.

DD_KOA

Specifies the octanal-air partition coefficient, used for the dry deposition of species POPG.

Note: DD_KOA is only used in the POPs simulation.

28.1.5 Wet deposition properties

WD_Is_H2SO4

Indicates that the species is H2SO4 (true), or isn’t (false). This allows the wet deposition code to perform
special calculations when computing H2SO4 rainout and washout.

WD_Is_HNO3

Indicates that the species is HNO3 (true), or isn’t (false). This allows the wet deposition code to perform
special calculations when computing HNO3. rainout and washout.

WD_Is_SO2

Indicates that the species is SO2 (true), or isn’t (false). This allows the wet deposition code to perform special
calculations when computing SO2 rainout and washout.

WD_CoarseAer

Indicates that the species is a coarse aerosol (true), or isn’t (false). For wet deposition purposes, the definition
of coarse aerosol is radius > 1 𝜇𝑚.

WD_LiqAndGas

Indicates that the the ice-to-gas ratio can be computed for this species by co-condensation (true), or can’t
(false).

WD_ConvFacI2G

Specifies the conversion factor (i.e. ratio of sticking coefficients on the ice surface) for computing the ice-to-gas
ratio by co-condensation, as used in the default wet deposition scheme.

Note: WD_ConvFacI2G only needs to be defined for those species for which WD_LiqAndGas is true.

214 Chapter 28. View GEOS-Chem species properties

https://wiki.geos-chem.org/POPs_simulation

GCHP, Release 14.3.0

WD_ConvFacI2G_Luo

Specifies the conversion factor (i.e. ratio of sticking coefficients on the ice surface) for computing the ice-to-gas
ratio by co-condensation, as used in the Luo et al. [2020] wet deposition scheme.

Note: WD_ConvFacI2G_Luo only needs to be defined for those species for which WD_LiqAndGas is true, and
is only used when the Luo et al. [2020] wet deposition scheme is activated.

WD_RetFactor

Specifies the retention efficiency 𝑅𝑖 of species in the liquid cloud condensate as it is converted to precipitation.
𝑅𝑖 < 1 accounts for volatization during riming.

WD_AerScavEff

Specifies the aerosol scavenging efficiency. This factor multiplies 𝐹 , the fraction of aerosol species that is lost
to convective updraft scavenging.

• WD_AerScavEff = 1.0 for most aerosols.

• WD_AerScavEff = 0.8 for secondary organic aerosols.

• WD_AerScavEff = 0.0 for hydrophobic aerosols.

WD_KcScaleFac

Specifies a temperature-dependent scale factor that is used to multiply 𝐾 (aka 𝐾𝑐), the rate constant for conver-
sion of cloud condensate to precipitation.

WD_KcScaleFac is defined as a 3-element vector:

• WD_KcScaleFac(1) multiplies 𝐾 when 𝑇 < 237 kelvin.

• WD_KcScaleFac(2) multiplies 𝐾 when 237 ≤ 𝑇 < 258 kelvin

• WD_KcScaleFac(3) multiplies 𝐾 when 𝑇 ≥ 258 kelvin.

WD_KcScaleFac_Luo

Specifies a temperature-dependent scale factor that is used to multiply𝐾, aka𝐾𝑐, the rate constant for conversion
of cloud condensate to precipitation.

Used only in the Luo et al. [2020] wet deposition scheme.

WD_KcScaleFac_Luo is defined as a 3-element vector:

• WD_KcScaleFac_Luo(1) multiplies 𝐾 when 𝑇 < 237 kelvin.

• WD_KcScaleFac_Luo(2) multiplies 𝐾 when 237 ≤ 𝑇 < 258 kelvin.

• WD_KcScaleFac_Luo(3) multiplies 𝐾 when 𝑇 ≥ 258 kelvin.

WD_RainoutEff

Specifies a temperature-dependent scale factor that is used to multiply 𝐹𝑖 (aka RAINFRAC), the fraction of species
scavenged by rainout.

WD_RainoutEff is defined as a 3-element vector:

• WD_RainoutEff(1) multiplies 𝐹𝑖 when 𝑇 < 237 kelvin.

• WD_RainoutEff(2) multiplies 𝐹𝑖 when 237 ≤ 𝑇 < 258 kelvin.

• RainoutEff(3) multiplies 𝐹𝑖 when 𝑇 ≥ 258 kelvin.

This allows us to better simulate scavenging by snow and impaction scavenging of BC. For most species, we need
to be able to turn off rainout when 237 ≤ 𝑇 < 258 kelvin. This can be easily done by setting RainoutEff(2)
= 0.

28.1. Species properties defined 215

GCHP, Release 14.3.0

Note: For SOA species, the maximum value of WD_RainoutEff will be 0.8 instead of 1.0.

WD_RainoutEff_Luo

Specifies a temperature-dependent scale factor that is used to multiply 𝐹𝑖 (aka RAINFRAC), the fraction of species
scavenged by rainout. (Used only in the [Luo et al., 2020] wet deposition scheme).

WD_RainoutEff_Luo is defined as a 3-element vector:

• WD_RainoutEff_Luo(1) multiplies 𝐹𝑖 when 𝑇 < 237 kelvin.

• WD_RainoutEff_Luo(2) multiplies 𝐹𝑖 when 237 ≤ 𝑇 < 258 kelvin.

• RainoutEff_Luo(3) multiplies 𝐹𝑖 when 𝑇 ≥ 258 kelvin.

This allows us to better simulate scavenging by snow and impaction scavenging of BC. For most species, we need
to be able to turn off rainout when 237 ≤ 𝑇 < 258 kelvin. This can be easily done by setting RainoutEff(2)
= 0.

Note: For SOA species, the maximum value of WD_RainoutEff_Luo will be 0.8 instead of 1.0.

28.1.6 Transport tracer properties

These properties are defined for species used in the TransportTracers simulation. We will refer to these species as
tracers.

Is_Tracer

Indicates that the species is a transport tracer (true), or is not (false).

Snk_Horiz

Specifies the horizontal domain of the tracer sink term. Allowable values are:

all

The tracer sink term will be applied throughout the entire horizonatal domain of the simulation grid.

lat_zone

The tracer sink term will be applied only within the latitude range specified by Snk_Lats.

Snk_Lats

Defines the latitude range [min_latitude, max_latitude] for the tracer sink term. Will only be used if
Snk_Horiz is set to lat_zone.

Snk_Mode

Specifies how the tracer sink term will be applied. Allowable values are:

constant

The tracer sink term is a constant value (specified by Snk_Value).

efolding

The tracer sink term has an e-folding decay constant (specified in Snk_Period).

halflife

A tracer sink term has a half-life (specified in Snk_Period).

none

The tracer does not have a sink term.

216 Chapter 28. View GEOS-Chem species properties

GCHP, Release 14.3.0

Snk_Period

Specifies the period (in days) for which the tracer sink term will be applied.

Snk_Value

Specifies a value for the tracer sink term.

Snk_Vert

Specifies the vertical domain of the tracer sink term. Allowable values are:

all

The tracer sink term will be applied throughout the entire vertical domain of the simulation grid.

boundary_layer

The tracer sink term will only be applied within the planetary boundary layer.

surface

The tracer sink term will only be applied at the surface.

troposphere

The tracer sink term will only be applied within the troposphere.

Src_Add

Specifies whether the tracer has a source term (true) or not (false).

Src_Horiz

Specifies the horizontal domain of the tracer source term. Allowable values are:

all

The tracer source term will be applied across the entire horizontal extent of the simulation grid.

lat_zone

The tracer source term will only be applied within the latitude range specified by Src_Lats.

Src_Lats

Defines the latitude range [min_latitude, max_latitude] for the tracer source term. Will only be applied
if Src_Horiz is set to lat_zone.

Src_Mode

Describes the type of tracer source term. Allowable values are:

constant

The tracer source term is a constant value (specified by Src_Value).

decay_of_another_species

The tracer source term comes from the decay of another species (e.g. Pb210 source comes from Rn222
decay).

HEMCO

The tracer source term will be read from a file via HEMCO.

maintain_mixing_ratio

The tracer source term will be calculated as needed to maintain a constant mixing ratio at the surface.

none

The tracer does not have a source term.

Src_Unit

Specifies the unit of the source term that will be applied to the tracer.

28.1. Species properties defined 217

GCHP, Release 14.3.0

ppbv

The source term has units of parts per billion by volume.

timestep

The source term has units of per emissions timestep.

Src_Value

Specifies a value for the tracer source term in Src_Units.

Src_Vert

Specifies the vertical domain of the tracer source term. Allowable values are:

all

The tracer source term will be applied throughout the entire vertical domain of the simulation grid.

pressures

The tracer source term will only be applied within the pressure range specified in Src_Pressures.

stratosphere

The tracer source term will only be applied in the stratosphere.

troposphere

The tracer source term will only be applied in the troposphere.

surface

The tracer source term will only be applied at the surface.

Src_Pressures

Defines the pressure range [min_pressure, max_pressure], in hPa for the tracer source term. Will only be
used if Src_Vert is set to pressures.

Units

Specifies the default units of the tracers (e.g. aoa, aoa_nh, aoa_bl are carried in units days, while all other
species in GEOS-Chem are kg/kg dry air).

Properties used by each transport tracer

The list below shows the various transport tracer properties that are used in the current TransportTracers simulation.

Is_Tracer
- true : all

Snk_Horiz:
- lat_zone : aoa_nh
- all : all others

Snk_Lats
- 30 50 : aoa_nh

Snk_Mode
- constant : aoa, aoa_bl, aoa_nh
- efolding : CH3I, CO_25
- none : SF6
- halflife : Be7, Be7s, Be10, Be10s

(continues on next page)

218 Chapter 28. View GEOS-Chem species properties

GCHP, Release 14.3.0

(continued from previous page)

Snk_Period (days)
- 5 : CH3I
- 25 : CO_25
- 50 : CO_50
- 90 : e90, e90_n, e90_s
- 11742.8 : Pb210, Pb210s
- 5.5 : Rn222
- 53.3 : Be7, Be7s
- 5.84e8 : Be10, Be10s

Snk_Value
- 0 : aoa, aoa_bl, aoa_nh

Snk_Vert
- boundary_layer : aoa_bl
- surface : aoa, aoa_nh
- troposphere : stOx
- all : all others

Src_Add
- false : Passive, stOx, st80_25
- true : all others

Src_Horiz
- lat_zone : e90_n, e90_s, nh_5, nh_50
- all : all others

Src_Lats
- [40.0, 91.0] : e90_n
- [-91.0, -40.0] : e90_s
- [30.0, 50.0] : nh_5, nh_50

Src_Mode
- constant : aoa, aoa_bl, aoa_nh, nh_50, nh_5, st80_25
- file2d : CH3I, CO_25, CO_50, Rn222, SF6 - HEMCO
- file3d : Be10, Be7 - HEMCO
- maintain_mixing_ratio : e_90, e90_n, e90_s
- decay_of_another_species : Pb210, Pb210s

Src_Unit
- ppbv : e90, e90_n, e90_s, st80_25
- timestep : aoa, aoa_bl, aoa_nh

Src_Value
- 1 : aoa, aoa_bl, aoa_nh
- 100 : e90, e90_n, e90_s
- 200 : st80_25

Src_Vert
- all : aoa, aoa_bl, aoa_nh, Pb210
- pressures : st80_25
- stratosphere : Be10s, Be7s, Pb210s, stOx

(continues on next page)

28.1. Species properties defined 219

GCHP, Release 14.3.0

(continued from previous page)

- surface : all others (not specified when Src_Mode: HEMCO)

Src_Pressures
- [0, 80] : st80_25

Units
- days : aoa, aoa_bl, aoa_bl

28.1.7 Other properties

BackgroundVV

If a restart file does not contain an global initial concentration field for a species, GEOS-Chem will attempt
to set the initial concentration (in 𝑣𝑜𝑙 𝑣𝑜𝑙−1 dry air) to the value specified in BackgroundVV globally. But
if BackgroundVV has not been specified, GEOS-Chem will set the initial concentration for the species to
10−20𝑣𝑜𝑙 𝑣𝑜𝑙−1 dry air instead.

Note: Recent versions of GCHP may require that all initial conditions for all species to be used in a simulation
be present in the restart file. See gchp.readthedocs.io for more information.

MP_SizeResAer

Indicates that the species is a size-resolved aerosol species (true), or isn’t (false). Used only by simulations
using either APM or TOMAS microphysics packages.

MP_SizeResNum

Indicates that the species is a size-resolved aerosol number (true), or isn’t (false). Used only by simulations
using either APM or TOMAS microphysics packages.

28.2 Access species properties in GEOS-Chem

In this section we will describe the derived types and objects that are used to store GEOS-Chem species properties.
We will also describe how you can extract species properties from the GEOS-Chem Species Database when you create
new GEOS-Chem code routines.

28.2.1 The Species derived type

The Species derived type (defined in module Headers/species_mod.F90) describes a complete set of properties for
a single GEOS-Chem species. In addition to the fields mentioned in the preceding sections, the Species derived type
also contains several species indices.

220 Chapter 28. View GEOS-Chem species properties

https://gchp.readthedocs.io
http://wiki.geos-chem.org/APM_aerosol_microphysics
http://wiki.geos-chem.org/TOMAS_aerosol_microphysics
http://wiki.geos-chem.org/APM_aerosol_microphysics
http://wiki.geos-chem.org/TOMAS_aerosol_microphysics
https://github.com/geoschem/geos-chem/blob/main/Headers/species_mod.F90#L61

GCHP, Release 14.3.0

Table 1: Indices stored in the Species derived type

Index Description
ModelId Model species index
AdvectId Advected species index
AerosolId Aerosol species index
DryAltId Dry dep species at altitude Id
DryDepId Dry deposition species index
GasSpcId Gas-phase species index
HygGrthId Hygroscopic growth species index
KppVarId KPP variable species index
KppFixId KPP fixed spcecies index
KppSpcId KPP species index
PhotolId Photolyis species index
RadNuclId Radionuclide index
TracerId Transport tracer index
WetDepId Wet deposition index

28.2.2 The SpcPtr derived type

The SpcPtr derived type (also defined in Headers/species_mod.F90) describes a container for an object of type
Species.

TYPE, PUBLIC :: SpcPtr
TYPE(Species), POINTER :: Info ! Single entry of Species Database

END TYPE SpcPtr

28.2.3 The GEOS-Chem Species Database object

The GEOS-Chem Species database is stored in the State_Chm%SpcData object. It describes an array, where each
element of the array is of type SpcPtr (which is a container for an object of type type Species.

TYPE(SpcPtr), POINTER :: SpcData(:) ! GC Species database

28.2.4 Species index lookup with Ind_()

Use function Ind_() (in module Headers/state_chm_mod.F90) to look up species indices by name. For example:

SUBROUTINE MySub(..., State_Chm, ...)

USE State_Chm_Mod, ONLY : Ind_

! Local variables
INTEGER :: id_O3, id_Br2, id_CO

! Find tracer indices with function the Ind_() function
id_O3 = Ind_('O3')
id_Br2 = Ind_('Br2')
id_CO = Ind_('CO')

(continues on next page)

28.2. Access species properties in GEOS-Chem 221

https://github.com/geoschem/geos-chem/blob/main/Headers/species_mod.F90#L54

GCHP, Release 14.3.0

(continued from previous page)

! Print tracer concentrations
print*, 'O3 at (23,34,1) : ', State_Chm%Species(id_O3)%Conc(23,34,1)
print*, 'Br2 at (23,34,1) : ', State_Chm%Species(id_Br2)%Conc(23,34,1)
print*, 'CO at (23,34,1) : ', State_Chm%Species(id_CO)%Conc(23,34,1)

! Print the molecular weight of O3 (obtained from the Species Database object)
print*, 'Mol wt of O3 [g]: ', State_Chm%SpcData(id_O3)%Info%MW_g

END SUBROUTINE MySub

Once you have obtained the species ID (aka ModelId) you can use that to access the individual fields in the Species
Database object. In the example above, we use the species ID for O3 (stored in id_O3) to look up the molecular weight
of O3 from the Species Database.

You may search for other model indices with Ind_() by passing an optional second argument:

! Position of HNO3 in the list of advected species
AdvectId = Ind_('HNO3', 'A')

! Position of HNO3 in the list of gas-phase species
AdvectId = Ind_('HNO3', 'G')

! Position of HNO3 in the list of dry deposited species
DryDepId = Ind_('HNO3', 'D')

! Position of HNO3 in the list of wet deposited species
WetDepId = Ind_('HNO3', 'W')

! Position of HNO3 in the lists of fixed KPP, active, & overall KPP species
KppFixId = Ind_('HNO3', 'F')
KppVarId = Ind_('HNO3', 'V')
KppVarId = Ind_('HNO3', 'K')

! Position of SALA in the list of hygroscopic growth species
HygGthId = Ind_('SALA', 'H')

! Position of Pb210 in the list of radionuclide species
HygGthId = Ind_('Pb210', 'N')

! Position of ACET in the list of photolysis species
PhotolId = Ind('ACET', 'P')

Ind_() will return -1 if a species does not belong to any of the above lists.

Tip: For maximum efficiency, we recommend that you use Ind_() to obtain the species indices during the initializa-
tion phase of a GEOS-Chem simulation. This will minimize the number of name-to-index lookup operations that need
to be performed, thus reducing computational overhead.

Implementing the tip mentioned above:

222 Chapter 28. View GEOS-Chem species properties

GCHP, Release 14.3.0

MODULE MyModule

IMPLICIT NONE
. . .

! Species ID of CO. All subroutines in MyModule can refer to id_CO.
INTEGER, PRIVATE :: id_CO

CONTAINS

. . . other subroutines . . .

SUBROUTINE Init_MyModule

! This subroutine only gets called at startup

. . .

! Store ModelId in the global id_CO variable
id_CO = Ind_('CO')

. . .

END SUBROUTINE Init_MyModule

END MODULE MyModule

28.2.5 Species lookup within a loop

If you need to access species properties from within a loop, it is better not to use the Ind_() function, as repeated
name-to-index lookups will incur computational overhead. Instead, you can access the species properties directly from
the GEOS-Chem Species Database object, as shown here.

SUBROUTINE MySub(..., State_Chm, ...)

!%%% MySub is an example of species lookup within a loop %%%

! Uses
USE Precision_Mod
USE State_Chm_Mod, ONLY : ChmState
USE Species_Mod, ONLY : Species

! Chemistry state object (which also holds the species database)
TYPE(ChmState), INTENT(INOUT) :: State_Chm

! Local variables
INTEGER :: N
TYPE(Species), POINTER :: ThisSpc
INTEGER :: ModelId, DryDepId, WetDepId
REAL(fp) :: Mw_g
REAL(f8) :: Henry_K0, Henry_CR, Henry_pKa

(continues on next page)

28.2. Access species properties in GEOS-Chem 223

GCHP, Release 14.3.0

(continued from previous page)

! Loop over all species
DO N = 1, State_Chm%nSpecies

! Point to the species database entry for this species
! (this makes the coding simpler)
ThisSpc => State_Chm%SpcData(N)%Info

! Get species properties
ModelId = ThisSpc%ModelId
DryDepId = ThisSpc%DryDepId
WetDepId = ThisSpc%WetDepId
MW_g = ThisSpc%MW_g
Henry_K0 = ThisSpc%Henry_K0
Henry_CR = ThisSpc%Henry_CR
Henry_pKa = ThisSpc%Henry_pKA

IF (ThisSpc%Is_Gas)
! ... The species is a gas-phase species
! ... so do something appropriate

ELSE
! ... The species is an aerosol
! ... so do something else appropriate

ENDIF

IF (ThisSpc%Is_Advected) THEN
! ... The species is advected
! ... (i.e. undergoes transport, PBL mixing, cloud convection)

ENDIF

IF (ThisSpc%Is_DryDep) THEN
! ... The species is dry deposited

ENDIF

IF (ThisSpc%Is_WetDep) THEN
! ... The species is soluble and wet deposits
! ... it is also scavenged in convective updrafts
! ... it probably has defined Henry's law properties

ENDIF

... etc ...

! Free the pointer
ThisSpc => NULL()

ENDDO

END SUBROUTINE MySub

224 Chapter 28. View GEOS-Chem species properties

CHAPTER

TWENTYNINE

UPDATE CHEMICAL MECHANISMS WITH KPP

This Guide demonstrates how you can use The Kinetic PreProcessor (aka KPP) to translate a chemical mechanism
specification in plain text format to highly-optimized Fortran90 code for use with GEOS-Chem:

Attention: You must use at least KPP 3.0.0 with the current GEOS-Chem release series.

29.1 Using KPP: Quick start

29.1.1 1. Navigate to the KPP/custom folder within GEOS-Chem

The KPP/custom folder is intended for building customized mechanisms. (The standard mechanisms that ship with
GEOS-Chem are contained in other folders named KPP/fullchem and KPP/Hg, but we will leave these alone.)

If you are using GEOS-Chem “Classic”, type:

$ cd GCClassic/src/GEOS-Chem/KPP/custom

or if you are using GCHP, type:

$ cd GCHP/GCHP_GridComp/GEOSChem_GridComp/geos-chem/KPP/custom

29.1.2 2. Edit the chemical mechanism configuration files

The KPP/custom folder contains sample chemical mechanism specification files (custom.eqn and custom.kpp). These
files define the chemical mechanism and are copies of the default fullchem mechanism configuration files found in
the KPP/fullchem folder. (For a complete description of KPP configuration files, please see the documentation at
kpp.readthedocs.io.)

You can edit these custom.eqn and custom.kpp configuration files to define your own custom mechanism (cf. Using
KPP: Reference section for details).

Important: We recommend always building a custom mechanism from the KPP/custom folder, and to leave the other
folders untouched. This will allow you to validate your modified mechanism against one of the standard mechanisms
that ship with GEOS-Chem.

225

https://kpp.readthedocs.io
https://kpp.readthedocs.io/en/stable/getting_started/00_revision_history.html#kpp-3-0-0
https://kpp.readthedocs.io

GCHP, Release 14.3.0

custom.eqn

The custom.eqn configuration file contains:

• List of active species

• List of inactive species

• Gas-phase reactions

• Heterogeneous reactions

• Photolysis reactions

custom.kpp

The custom.kpp configuration file is the main configuration file. It contains:

• Solver options

• Production and loss family definitions

• Functions to compute reaction rates

• Global definitions

• An #INCLUDE custom.eqn command, which tells KPP to look for chemical reaction definitions in custom.eqn.

Important: The symbolic link gckpp.kpp points to custom.kpp. This is necessary in order to generate Fortran files
with the the naming convention gckpp*.F90.

29.1.3 3. Run the build_mechanism.sh script

Once you are satisfied with your custom mechanism specification you may now use KPP to build the source code files
for GEOS-Chem.

Return to the top-level KPP folder from KPP/custom:

$ cd ..

There you will find a script named build_mechanism.sh, which is the driver script for running KPP. Execute the
script as follows:

$./build_mechanism.sh custom

This will run the KPP executable (located in the folder $KPP_HOME/bin) custom.kpp configuration file (via symbolic
link gckpp.kpp, It also runs a python script to generate code for the OH reactivity diagnostic. You should see output
similar to this:

This is KPP-X.Y.Z.

KPP is parsing the equation file.
KPP is computing Jacobian sparsity structure.
KPP is starting the code generation.
KPP is initializing the code generation.
KPP is generating the monitor data:

(continues on next page)

226 Chapter 29. Update chemical mechanisms with KPP

GCHP, Release 14.3.0

(continued from previous page)

- gckpp_Monitor
KPP is generating the utility data:
- gckpp_Util

KPP is generating the global declarations:
- gckpp_Main

KPP is generating the ODE function:
- gckpp_Function

KPP is generating the ODE Jacobian:
- gckpp_Jacobian
- gckpp_JacobianSP

KPP is generating the linear algebra routines:
- gckpp_LinearAlgebra

KPP is generating the utility functions:
- gckpp_Util

KPP is generating the rate laws:
- gckpp_Rates

KPP is generating the parameters:
- gckpp_Parameters

KPP is generating the global data:
- gckpp_Global

KPP is generating the driver from none.f90:
- gckpp_Main

KPP is starting the code post-processing.

KPP has succesfully created the model "gckpp".

Reactivity consists of xxx reactions # NOTE: xxx will be replaced by the actual number
Written to gckpp_Util.F90

where X.Y.Z denotes the KPP version that you are using.

If this process is successful, the custom folder will have several new files starting with gckpp:

$ ls gckpp*
gckpp_Function.F90 gckpp_Jacobian.F90 gckpp.log gckpp_Precision.F90
gckpp_Global.F90 gckpp_JacobianSP.F90 gckpp_Model.F90 gckpp_Rates.F90
gckpp_Initialize.F90 gckpp.kpp@ gckpp_Monitor.F90 gckpp_Util.F90
gckpp_Integrator.F90 gckpp_LinearAlgebra.F90 gckpp_Parameters.F90

The gckpp*.F90 files contain optimized Fortran-90 instructions for solving the chemical mechanism that you have
specified. The gckpp.log file is a human-readable description of the mechanism. Also, gckpp.kpp is a symbolic
link to the custom.kpp file.

A complete description of these KPP-generated files at kpp.readthedocs.io.

29.1. Using KPP: Quick start 227

https://kpp.readthedocs.io/en/latest/using_kpp/05_output_from_kpp.html#the-fortran90-code

GCHP, Release 14.3.0

29.1.4 4. Recompile GEOS-Chem with your custom mechanism

GEOS-Chemwill always use the default mechanism (which is named fullchem). To tell GEOS-Chem to use the custom
mechanism instead, follow these steps.

Tip: GEOS-Chem Classic run directories have a subdirectory named build in which you can configure and build
GEOS-Chem. If you don’t have a build directory, you can add one to your run directory with mkdir build.

From the build directory, type:

$ cmake ../CodeDir -DMECH=custom -DRUNDIR=..

You should see output similar to this written to the screen:

-- General settings:
* MECH: fullchem carbon Hg **custom**

This confirms that the custom mechanism has been selected.

Once you have configured GEOS-Chem to use the custom mechanism, you may build the exectuable. Type:

$ make -j
$ make -j install

The executable file (gcclassic or gchp, depending on which mode of GEOS-Chem that you are using) will be placed
in the run directory.

29.2 Using KPP: Reference section

29.2.1 Adding species to a mechanism

List chemically-active (aka variable) species in the #DEFVAR section of custom.eqn, as shown below:

#DEFVAR
A3O2 = IGNORE; {CH3CH2CH2OO; Primary RO2 from C3H8}
ACET = IGNORE; {CH3C(O)CH3; Acetone}
ACTA = IGNORE; {CH3C(O)OH; Acetic acid}
...etc ...

The IGNORE tells KPP not to perform mass-balance checks, which would make GEOS-Chem execute more slowly.

List species whose concentrations do not change in the #DEFFIX section of custom.eqn, as shown below:

#DEFFIX
H2 = IGNORE; {H2; Molecular hydrogen}
N2 = IGNORE; {N2; Molecular nitrogen}
O2 = IGNORE; {O2; Molecular oxygen}
... etc ...

Species may be listed in any order, but we have found it convenient to list them alphabetically.

228 Chapter 29. Update chemical mechanisms with KPP

https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#defvar-and-deffix
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#defvar-and-deffix

GCHP, Release 14.3.0

29.2.2 Adding reactions to a mechanism

Gas-phase reactions

List gas-phase reactions first in the #EQUATIONS section of custom.eqn.

#EQUATIONS
//
// Gas-phase reactions
//
...skipping over the comment header...
//
O3 + NO = NO2 + O2 : GCARR_ac(3.00E-12, -1500.0);
O3 + OH = HO2 + O2 : GCARR_ac(1.70E-12, -940.0);
O3 + HO2 = OH + O2 + O2 : GCARR_ac(1.00E-14, -490.0);
O3 + NO2 = O2 + NO3 : GCARR_ac(1.20E-13, -2450.0);
... etc ...

Gas-phase reactions: General form

No matter what reaction is being added, the general procedure is the same. A new line must be added to custom.eqn
of the following form:

A + B = C + 2.000D : RATE_LAW_FUNCTION(ARG_A, ARG_B ...);

The denotes the reactants (𝐴 and 𝐵) as well as the products (𝐶 and 𝐷) of the reaction. If exactly one molecule is
consumed or produced, then the factor can be omitted; otherwise the number of molecules consumed or produced
should be specified with at least 1 decimal place of accuracy. The final section, between the colon and semi-colon,
specifies the function RATE_LAW_FUNCTION and its arguments which will be used to calculate the reaction rate constant
k. Rate-law functions are specified in the custom.kpp file.

For an equation such as the one above, the overall rate at which the reaction will proceed is determined by 𝑘[𝐴][𝐵].
However, if the reaction rate does not depend on the concentration of 𝐴 or 𝐵, you may write it with a constant value,
such as:

A + B = C + 2.000D : 8.95d-17

This will save the overhead of a function call.

Rates for two-body reactions according to the Arrhenius law

For many reactions, the calculation of k follows the Arrhenius law:

k = a0 * (300 / TEMP)**b0 * EXP(c0 / TEMP)

Important: In relation to Arrhenius parameters that you may find in scientific literature, 𝑎0 represents the 𝐴 term and
𝑐0 represents −𝐸/𝑅 (not 𝐸/𝑅, which is usually listed).

For example, the JPL chemical data evaluation), (Feb 2017) specifies that the reaction O3 + NO produces NO2 and O2,
and its Arrhenius parameters are 𝐴 = 3.0x10^-12 and 𝐸/𝑅 = 1500. To use the Arrhenius formulation above, we must
specify 𝑎0 = 3.0𝑒− 12 and 𝑐0 = −1500.

29.2. Using KPP: Reference section 229

https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#equations
https://jpldataeval.jpl.nasa.gov

GCHP, Release 14.3.0

To specify a two-body reaction whose rate follows the Arrhenius law, you can use the GCARR rate-law function, which
is defined in gckpp.kpp. For example, the entry for the 𝑂3 + 𝑁𝑂 = 𝑁𝑂2 + 𝑂2 reaction can be written as in
custom.eqn as:

O3 + NO = NO2 + O2 : GCARR(3.00E12, 0.0, -1500.0);

Other rate-law functions

The gckpp.kpp file contains other rate law functions, such as those required for three-body, pressure-dependent re-
actions. Any rate function which is to be referenced in the custom.eqn file must be available in gckpp.kpp prior to
building the reaction mechanism.

Making your rate law functions computationally efficient

We recommend writing your rate-law functions so as to avoid explicitly casting variables from REAL*4 to REAL*8.
Code that looks like this:

REAL, INTENT(IN) :: A0, B0, C0
rate = DBLE(A0) + (300.0 / TEMP)**DBLE(B0) + EXP(DBLE(C0)/ TEMP)

Can be rewritten as:

REAL(kind=dp), INTENT(IN) :: A0, B0, C0
rate = A0 + (300.0d0 / TEMP)**B0 + EXP(C0/ TEMP)

Not only do casts lead to a loss of precision, but each cast takes a few CPU clock cycles to execute. Because these
rate-law functions are called for each cell in the chemistry grid, wasted clock cycles can accumulate into a noticeable
slowdown in execution.

You can also make your rate-law functions more efficient if you rewrite them to avoid computing terms that evaluate
to 1. We saw above (cf. Rates for two-body reactions according to the Arrhenius law) that the rate of the reaction
𝑂3+𝑁𝑂 = 𝑁𝑂2+𝑂2 can be computed according to the Arrhenius law. But because b0 = 0, term (300/TEMP)**b0
evaluates to 1. We can therefore rewrite the computation of the reaction rate as:

k = 3.0x10^-12 + EXP(1500 / TEMP)

Tip: The EXP() and ** mathematical operations are among the most costly in terms of CPU clock cycles. Avoid
calling them whenever necessary.

A recommended implementation would be to create separate rate-law functions that take different arguments depending
on which parameters are nonzero. For example, the Arrhenius law function GCARR can be split into multiple functions:

1. GCARR_abc(a0, b0, c0): Use when a0 > 0 and b0 > 0 and c0 > 0

2. GCARR_ab(a0, b0): Use when a0 > 0 and b0 > 0

3. GCARR_ac(a0, c0): Use when a0 > 0 and c0 > 0

Thus we can write the O3 + NO reaction in custom.eqn as:

O3 + NO = NO2 + O2 : GCARR_ac(3.00d12, -1500.0d0);

using the rate law function for when both a0 > 0 and c0 > 0.

230 Chapter 29. Update chemical mechanisms with KPP

GCHP, Release 14.3.0

29.2.3 Heterogeneous reactions

List heterogeneous reactions after all of the gas-phase reactions in custom.eqn, according to the format below:

//
// Heterogeneous reactions
//
HO2 = O2 : HO2uptk1stOrd(State_Het); {2013/
→˓03/22; Paulot2009; FP,EAM,JMAO,MJE}
NO2 = 0.500HNO3 + 0.500HNO2 : NO2uptk1stOrdAndCloud(State_Het);
NO3 = HNO3 : NO3uptk1stOrdAndCloud(State_Het);
NO3 = NIT : NO3hypsisClonSALA(State_Het); {2018/
→˓03/16; XW}
... etc ...

A simple example is uptake of HO2, specified as

HO2 = H2O : HO2uptk1stOrd(State_Het);

Note: KPP requires that each reaction have at least one product. In order to satisfy this requirement, you might need
to set the product of your heterogeneous reaction to a dummy product or a fixed species (i.e. one whose concentration
does not change with time).

The rate law function NO2uptk1stOrd is contained in the Fortran module KPP/fullchem/
fullchem_RateLawFuncs.F90, which is symbolically linked to the custom folder. The fullchem_RateLawFuncs.
F90 file is inlined into gckpp_Rates.F90 so that it can be used within the custom mechanism.

To implement an additional heterogeneous reaction, the rate calculation must be added to the KPP/custom/custom.
eqn file. Rate calculations may be specified as mathematical expressions (using any of the variables contained in the
gckpp_Global.F90)

SPC1 + SPC2 = SPC3 + SPC4: 8.0e-13 * TEMP_OVER_K300; {Example}

or you may define a new rate law function in the fullchem_RateLawFuncs.F90 such as:

SPC1 + SPC2 = SPC3 + SPC4: myNewRateFunction(State_Het); {Example}

29.2.4 Photolysis reactions

List photolysis reactions after the heterogeneous reactions, as shown below.

//
// Photolysis reactions
//
O3 + hv = O + O2 : PHOTOL(2); {2014/02/03; Eastham2014;␣
→˓SDE}
O3 + hv = O1D + O2 : PHOTOL(3); {2014/02/03; Eastham2014;␣
→˓SDE}
O2 + hv = 2.000O : PHOTOL(1); {2014/02/03; Eastham2014;␣
→˓SDE}
... etc ...
NO3 + hv = NO2 + O : PHOTOL(12); {2014/02/03; Eastham2014;␣

(continues on next page)

29.2. Using KPP: Reference section 231

GCHP, Release 14.3.0

(continued from previous page)

→˓SDE}
... etc ...

A photolysis reaction can be specified by giving the correct index of the PHOTOL array. This index can be determined
by inspecting the file FJX_j2j.dat.

Tip: See the photolysis section of geoschem_config.yml to determine the folder in which FJX_j2j.dat is located.

For example, one branch of the 𝑁𝑂3 photolysis reaction is specified in the custom.eqn file as

NO3 + hv = NO2 + O : PHOTOL(12)

Referring back to FJX_j2j.dat shows that reaction 12, as specified by the left-most index, is indeed𝑁𝑂3 = 𝑁𝑂2+𝑂:

12 NO3 PHOTON NO2 O 0.886 /NO3 /

If your reaction is not already in FJX_j2j.dat, you may add it there. You may also need to modify FJX_spec.dat
(in the same folder ast FJX_j2j.dat) to include cross-sections for your species. Note that if you add new reactions to
FJX_j2j.dat you will also need to set the parameter JVN_ in GEOS-Chem module Headers/CMN_FJX_MOD.F90 to
match the total number of entries.

If your reaction involves new cross section data, you will need to follow an additional set of steps. Specifically, you
will need to:

1. Estimate the cross section of each wavelength bin (using the correlated-k method), and

2. Add this data to the FJX_spec.dat file.

For the first step, you can use tools already available on the Prather research group website. To generate the cross-
sections used by Fast-JX, download the file UCI_fastJ_addX_73cx.tar.gz. You can then simply add your data to
FJX_spec.dat and refer to it in FJX_j2j.dat as specified above. The following then describes how to generate
a new set of cross-section data for the example of some new species MEKR:

To generate the photolysis cross sections of a new species, come up with some unique name which you will use to refer
to it in the FJX_j2j.dat and FJX_spec.dat files - e.g. MEKR. You will need to copy one of the addX_*.f routines
and make your own (say, addX_MEKR.f). Your edited version will need to read in whatever cross section data you
have available, and you’ll need to decide how to handle out-of-range information - this is particularly crucial if your
cross section data is not defined in the visible wavelengths, as there have been some nasty problems in the past caused
by implicitly assuming that the XS can be extrapolated (I would recommend buffering your data with zero values at
the exact limits of your data as a conservative first guess). Then you need to compile that as a standalone code and
run it; this will spit out a file fragment containing the aggregated 18-bin cross sections, based on a combination of
your measured/calculated XS data and the non-contiguous bin subranges used by Fast-JX. Once that data has been
generated, just add it to FJX_spec.dat and refer to it as above. There are examples in the addX files of how to deal
with variations of cross section with temperature or pressure, but the main takeaway is that you will generate multiple
cross section entries to be added to FJX_spec.dat with the same name.

Important: If your cross section data varies as a function of temperature AND pressure, you need to do something
a little different. The acetone XS documentation shows one possible way to handle this; Fast-JX currently interpolates
over either T or P, but not both, so if your data varies over both simultaneously then this will take some thought. The
general idea seems to be that one determines which dependence is more important and uses that to generate a set of 3
cross sections (for interpolation), assuming values for the unused variable based on the standard atmosphere.

232 Chapter 29. Update chemical mechanisms with KPP

http://ftp.as.harvard.edu/gcgrid/data/ExtData/CHEM_INPUTS/FAST_JX/code/UCI_fastJ_addX_73cx.tar.gz

GCHP, Release 14.3.0

29.2.5 Adding production and loss families to a mechanism

Certain common families (e.g. 𝑃𝑂𝑥, 𝐿𝑂𝑥) have been pre-defined for you. You will find the family definitions near the
top of the custom.kpp file (which is symbolically linked to gckpp,kpp):

#FAMILIES
POx : O3 + NO2 + 2NO3 + PAN + PPN + MPAN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2 +␣
→˓2BrNO3 + MPN + ETHLN + MVKN + MCRHN + MCRHNB + PROPNN + R4N2 + PRN1 + PRPN + R4N1 +␣
→˓HONIT + MONITS + MONITU + OLND + OLNN + IHN1 + IHN2 + IHN3 + IHN4 + INPB + INPD + ICN␣
→˓+ 2IDN + ITCN + ITHN + ISOPNOO1 + ISOPNOO2 + INO2B + INO2D + INA + IDHNBOO + IDHNDOO1␣
→˓+ IDHNDOO2 + IHPNBOO + IHPNDOO + ICNOO + 2IDNOO + MACRNO2 + ClO + HOCl + ClNO2 +␣
→˓2ClNO3 + 2Cl2O2 + 2OClO + O + O1D + IO + HOI + IONO + 2IONO2 + 2OIO + 2I2O2 + 3I2O3 +␣
→˓4I2O4;
LOx : O3 + NO2 + 2NO3 + PAN + PPN + MPAN + HNO4 + 3N2O5 + HNO3 + BrO + HOBr + BrNO2 +␣
→˓2BrNO3 + MPN + ETHLN + MVKN + MCRHN + MCRHNB + PROPNN + R4N2 + PRN1 + PRPN + R4N1 +␣
→˓HONIT + MONITS + MONITU + OLND + OLNN + IHN1 + IHN2 + IHN3 + IHN4 + INPB + INPD + ICN␣
→˓+ 2IDN + ITCN + ITHN + ISOPNOO1 + ISOPNOO2 + INO2B + INO2D + INA + IDHNBOO + IDHNDOO1␣
→˓+ IDHNDOO2 + IHPNBOO + IHPNDOO + ICNOO + 2IDNOO + MACRNO2 + ClO + HOCl + ClNO2 +␣
→˓2ClNO3 + 2Cl2O2 + 2OClO + O + O1D + IO + HOI + IONO + 2IONO2 + 2OIO + 2I2O2 + 3I2O3 +␣
→˓4I2O4;
PCO : CO;
LCO : CO;
PSO4 : SO4;
LCH4 : CH4;
PH2O2 : H2O2;

Note: The 𝑃𝑂𝑥, 𝐿𝑂𝑥, 𝑃𝐶𝑂, and 𝐿𝐶𝑂 families are used for computing budgets in the GEOS-Chem benchmark
simulations. 𝑃𝑆𝑂4 is required for simulations using TOMAS aerosol microphysics.

To add a new prod/loss family, add a new line to the #FAMILIES section with the format

FAM_NAME : MEMBER_1 + MEMBER_2 + ... + MEMBER_N;

The family name must start with P or L to indicate whether KPP should calculate a production or a loss rate. You will
also need to make a corresponding update to the GEOS-Chem species database (species_database.yml) in order
to define the FullName, Is_Gas, and MW_g, and attributes. For example, the entries for family species LCO and PCO
are:

LCO:
FullName: Dummy species to track loss rate of CO
Is_Gas: true
MW_g: 28.01

PCO:
FullName: Dummy species to track production rate of CO
Is_Gas: true
MW_g: 28.01

The maximum number of families allowed by KPP is currently set to 300. Depending on how many prod/loss families
you add, you may need to increase that to a larger number to avoid errors in KPP. You can change the number for
MAX_FAMILIES in KPP/kpp-code/src/gdata.h and then rebuild the KPP executable.

// - Many limits can be changed here by adjusting the MAX_* constants
// - To increase the max size of inlined code (F90_GLOBAL etc.),

(continues on next page)

29.2. Using KPP: Reference section 233

https://kpp.readthedocs.io/en/stable/getting_started/01_installation.html#build-the-kpp-executableFlexChem

GCHP, Release 14.3.0

(continued from previous page)

// change MAX_INLINE in scan.h.
//
// NOTES:
// ------
// (1) Note: MAX_EQN or MAX_SPECIES over 1023 causes a seg fault in CI build
// -- Lucas Estrada, 10/13/2021
//
// (2) MacOS has a hard limit of 65332 bytes for stack memory. To make
// sure that you are using this max amount of stack memory, add
// "ulimit -s 65532" in your .bashrc or .bash_aliases script. We must
// also set smaller limits for MAX_EQN and MAX_SPECIES here so that we
// do not exceed the avaialble stack memory (which will result in the
// infamous "Segmentation fault 11" error). If you are stll having
// problems on MacOS then consider reducing MAX_EQN and MAX_SPECIES
// to smaller values than are listed below.
// -- Bob Yantosca (03 May 2022)
#ifdef MACOS
#define MAX_EQN 2000 // Max number of equations (MacOS only)
#define MAX_SPECIES 1000 // Max number of species (MacOS only)
#else
#define MAX_EQN 11000 // Max number of equations
#define MAX_SPECIES 6000 // Max number of species
#endif
#define MAX_SPNAME 30 // Max char length of species name
#define MAX_IVAL 40 // Max char length of species ID ?
#define MAX_EQNTAG 32 // Max length of equation ID in eqn file
#define MAX_K 1000 // Max length of rate expression in eqn file
#define MAX_ATOMS 10 // Max number of atoms
#define MAX_ATNAME 10 // Max char length of atom name
#define MAX_ATNR 250 // Max number of atom tables
#define MAX_PATH 300 // Max char length of directory paths
#define MAX_FILES 20 // Max number of files to open
#define MAX_FAMILIES 300 // Max number of family definitions
#define MAX_MEMBERS 150 // Max number of family members
#define MAX_EQNLEN 300 // Max char length of equations
#define MAX_EQNLEN 200

Important: When adding a prod/loss family or changing any of the other settings in gckpp.kpp, you must re-run
KPP to produce new Fortran90 files for GEOS-Chem.

Production and loss families are archived via the HISTORY diagnostics. For more information, please see the Guide
to GEOS_Chem History diagnostics on the GEOS-Chem wiki.

234 Chapter 29. Update chemical mechanisms with KPP

http://wiki.geos-chem.org/Guide_to_GEOS_Chem_History_diagnostics
http://wiki.geos-chem.org/Guide_to_GEOS_Chem_History_diagnostics

GCHP, Release 14.3.0

29.2.6 Changing the numerical integrator

Several global options for KPP are listed at the top of the gckpp.kpp file:

#MINVERSION 3.0.0 { Need this version of KPP or later }
#INTEGRATOR rosenbrock_autoreduce { Use Rosenbrock integration method }
#AUTOREDUCE on { ... with autoreduce enabled but optional }
#LANGUAGE Fortran90 { Generate solver code in Fortran90 ... }
#UPPERCASEF90 on { ... with .F90 suffix (instead of .f90) }
#DRIVER none { Do not create gckpp_Main.F90 }
#HESSIAN off { Do not create the Hessian matrix }
#MEX off { MEX is for Matlab, so skip it }
#STOICMAT off { Do not create stoichiometric matrix }

The #INTEGRATOR tag specifies the choice of numerical integrator that you wish to use with your chemical mecha-
nism. The table below lists

Table 1: Integrators used for each KPP-based GEOS-Chem mechanism

Simulation #INTEGRATOR #AUTOREDUCE
carbon feuler
custom rosenbrock_autoreduce on
fullchem rosenbrock_autoreduce on
Hg rosenbrock

Attention: The auto-reduction option is activated but disabled by default in the GEOS-Chem carbon and fullchem
mechanisms. You must activate the auto-reduction option in geoschem_config.yml.

If you wish to use a different integrator for research purposes, you may select from several more options.

The #LANGUAGE should be set to Fortran90 and #UPPERCASEF90 should be set to on.

The #MINVERSION should be set to 3.0.0. This is the minimum KPP version you should be using with GEOS-Chem.

The other options should be left as they are, as they are not relevant to GEOS-Chem.

For more information about KPP settings, please see https://kpp.readthedocs.io.

29.2. Using KPP: Reference section 235

https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#integrator
https://kpp.readthedocs.io/en/latest/tech_info/07_numerical_methods.html
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#language
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#uppercasef90
https://kpp.readthedocs.io/en/latest/using_kpp/04_input_for_kpp.html#minversion
kpp.readthedocs.io

GCHP, Release 14.3.0

236 Chapter 29. Update chemical mechanisms with KPP

CHAPTER

THIRTY

VIEW RELATED DOCUMENTATION

Table 1: GEOS-Chem web, wiki and Youtube channel

Site Link
GEOS-Chem web site geos-chem.org
GEOS-Chem wiki wiki.geos-chem.org
Video tutorials on Youtube (various) youtube.com/~geoschem

Table 2: User manuals for GEOS-Chem and related software

Software Maintained by Documentation and contact
info

GEOS-Chem Classic GCST geos-chem.readthedocs.io
GCHP GCST gchp.readthedocs.io
HEMCO GCST hemco.readthedocs.io
GEOS-Chem on the cloud GCST geos-chem-

cloud.readthedocs.io
GCPy (Python toolkit) GCST gcpy.readthedocs.io
WRF-GC (GEOS-Chem in WRF) WRF-GC developers wrf.geos-chem.org
KPP (The Kinetic PreProcessor) KPP developers kpp.readthedocs.io
IMI (Integrated Methane Inversion) IMI developers imi.readthedocs.io
CHEEREIO (Data assimilation & emissions inver-
sions)

Drew Pendergrass (Har-
vard)

cheereio.readthedocs.io

Table 3: User manual archives for unsupported legacy software

Legacy Software Documentation archive
Unsupported GEOS-Chem Classic versions (prior to 13.0.0) geoschem.github.io/gcclassic-manpage-archive
GAMAP (superseded by GCPy) geoschem.github.io/gamap-manual

237

http://geos-chem.org
http://wiki.geos-chem.org
https://youtube.com/~geoschem
htts://geos-chem.org/support-team.html
https://geos-chem.readthedocs.io
https://gchp.readthedocs.io
https://hemco.readthedocs.io
https://geos-chem-cloud.readthedocs.io
https://geos-chem-cloud.readthedocs.io
https://gcpy.readthedocs.io
http://wrf.geos-chem.org
https://kpp.readthedocs.io
https://imi.readthedocs.io
https://cheereio.readthedocs.io
https://geoschem.github.io/gcclassic-manpage-archive
https://geoschem.github.io/gamap-manual

GCHP, Release 14.3.0

238 Chapter 30. View related documentation

CHAPTER

THIRTYONE

SUPPORT GUIDELINES

GEOS-Chem support is maintained by the GEOS-Chem Support Team (GCST), which is based jointly at Harvard
University and Washington University in St. Louis.

We track bugs, user questions, and feature requests through GitHub issues. Please help out as you can in response to
issues and user questions.

31.1 How to report a bug

We use GitHub to track issues. To report a bug, open a new issue. Please include your name, institution, and all
relevant information, such as simulation log files and instructions for replicating the bug.

31.2 Where can I ask for help?

We use GitHub issues to support user questions. To ask a question, open a new issue and select the question template.
Please include your name and institution in the issue.

31.3 What type of support can I expect?

We will be happy to assist you in resolving bugs and technical issues that arise when compiling or running GEOS-
Chem. User support and outreach is an important part of our mission to support the International GEOS-Chem User
Community.

Even though we can assist in several ways, we cannot possibly do everything. We rely on GEOS-Chem users being
resourceful and willing to try to resolve problems on their own to the greatest extent possible.

If you have a science question rather than a technical question, you should contact the relevant GEOS-Chem Working
Group(s) directly. But if you do not know whom to ask, you may open a new issue (See “Where can I ask for help”
above) and we will be happy to direct your question to the appropriate person(s).

239

https://www.youtube.com/watch?v=dFBhdotYVf8
https://github.com/geoschem/GCHP/issues/new/choose
https://github.com/geoschem/GCHP/issues/new/choose
https://geoschem.github.io/people.html
https://geoschem.github.io/people.html
https://geoschem.github.io/working-groups.html
https://geoschem.github.io/working-groups.html

GCHP, Release 14.3.0

31.4 How to submit changes

Please see Contributing Guidelines.

31.5 How to request an enhancement

Please see Contributing Guidelines.

240 Chapter 31. Support Guidelines

https://gchp.readthedocs.io/en/latest/reference/CONTRIBUTING.html
https://gchp.readthedocs.io/en/latest/reference/CONTRIBUTING.html

CHAPTER

THIRTYTWO

CONTRIBUTING GUIDELINES

Thank you for looking into contributing to GEOS-Chem! GEOS-Chem is a grass-roots model that relies on contri-
butions from community members like you. Whether you’re new to GEOS-Chem or a longtime user, you’re a valued
member of the community, and we want you to feel empowered to contribute.

Updates to the GEOS-Chem model benefit both you and the entire GEOS-Chem community. You benefit through
coauthorship and citations. Priority development needs are identified at GEOS-Chem users’ meetings with updates
between meetings based on GEOS-Chem Steering Committee (GCSC) input through Working Groups.

32.1 We use GitHub and ReadTheDocs

We use GitHub to host the GCHP source code, to track issues, user questions, and feature requests, and to accept pull
requests: https://github.com/geoschem/GCHP. Please help out as you can in response to issues and user questions.

GCHP Classic documentation can be found at gchp.readthedocs.io.

32.2 When should I submit updates?

Submit bug fixes right away, as these will be given the highest priority. Please see “Support Guidelines” for more
information.

Submit updates (code and/or data) for mature model developments once you have submitted a paper on the topic. Your
Working Group chair can offer guidance on the timing of submitting code for inclusion into GEOS-Chem.

The practical aspects of submitting code updates are listed below.

32.3 How can I submit updates?

We use GitHub Flow, so all changes happen through pull requests. This workflow is described here.

As the author you are responsible for:

• Testing your changes

• Updating the user documentation (if applicable)

• Supporting issues and questions related to your changes

241

https://geoschem.github.io/people.html
https://geoschem.github.io/new-developments.html
https://geoschem.github.io/steering-committee.html
https://geoschem.github.io/working-groups.html
https://github.com/geoschem/GCHP
https://geos-chem.readthedocs.io
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html

GCHP, Release 14.3.0

32.3.1 Process for submitting code updates

1. Contact your GEOS-Chem Working Group leaders to request that your updates be added to GEOS-Chem. They
will will forward your request to the GCSC.

2. The GCSC meets quarterly to set GEOS-Chem model development priorities. Your update will be slated for
inclusion into an upcoming GEOS-Chem version.

3. Create or log into your GitHub account.

4. Fork the relevant GEOS-Chem repositories into your Github account.

5. Clone your forks of the GEOS-Chem repositories to your computer system.

6. Add your modifications into a new branch off the main branch.

7. Test your update thoroughly and make sure that it works. For structural updates we recommend performing a
difference test (i.e. testing against the prior version) in order to ensure that identical results are obtained).

8. Review the coding conventions and checklists for code and data updates listed below.

9. Create a pull request in GitHub.

10. The GEOS-Chem Support Team will add your updates into the development branch for an upcoming GEOS-
Chem version. They will also validate your updates with benchmark simulations.

11. If the benchmark simulations reveal a problem with your update, the GCST will request that you take further
corrective action.

32.3.2 Coding conventions

The GEOS-Chem codebase dates back several decades and includes contributions from many people and multiple
organizations. Therefore, some inconsistent conventions are inevitable, but we ask that you do your best to be consistent
with nearby code.

32.3.3 Checklist for submitting code updates

1. Use Fortran-90 free format instead of Fortran-77 fixed format.

2. Include thorough comments in all submitted code.

3. Include full citations for references at the top of relevant source code modules.

4. Remove extraneous code updates (e.g. testing options, other science).

5. Submit any related code or configuration files for GCHP along with code or configuration files for GEOS-Chem
Classic.

32.3.4 Checklist for submitting data files

1. Choose a final file naming convention before submitting data files for inclusion to GEOS-Chem.

2. Make sure that all netCDF files adhere to the COARDS conventions.

3. Concatenate netCDF files to reduce the number of files that need to be opened. This results in more efficient I/O
operations.

4. Chunk and deflate netCDF files in order to improve file I/O.

5. Include an updated HEMCO configuration file corresponding to the new data.

242 Chapter 32. Contributing Guidelines

http://wiki.geos-chem.org/GEOS-Chem_model_development_priorities
https://github.com/
https://help.github.com/articles/fork-a-repo/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://help.github.com/articles/creating-a-pull-request/
https://geoschem.github.io/support-team.html
http://wiki.geos-chem.org/GEOS-Chem_benchmarking
https://gchp.readthedocs.io
https://geos-chem.readthedocs.io
https://geos-chem.readthedocs.io
https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/coards-guide.html
https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/netcdf-guide.html#concatenate-netcdf-files
https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/netcdf-guide.html#chunk-and-deflate-a-netcdf-file-to-improve-i-o
https://hemco.readthedocs.io/en/latest/hco-ref-guide/hemco-config.html

GCHP, Release 14.3.0

6. Include a README file detailing data source, contents, etc.

7. Include script(s) used to process original data

8. Include a summary or description of the expected results (e.g. emission totals for each species)

Also follow these additional steps to ensure that your data can be read by GCHP:

1. All netCDF data variables should be of type float (aka REAL*4) or double (aka REAL*8).

2. Use a recent reference datetime (i.e. after 1900-01-01) for the netCDF time:units attribute.

3. The first time value in each file should be 0, corresponding with the reference datetime.

32.4 How can I request a new feature?

We accept feature requests through issues on GitHub. To request a new feature, open a new issue and select the feature
request template. Please include all the information that migth be relevant, including the motivation for the feature.

32.5 How can I report a bug?

Please see Support Guidelines.

32.6 Where can I ask for help?

Please see Support Guidelines.

32.4. How can I request a new feature? 243

https://github.com/geoschem/GCHP/issues/new/choose
https://gchp.readthedocs.io/en/latest/reference/SUPPORT.html
https://gchp.readthedocs.io/en/latest/reference/SUPPORT.html

GCHP, Release 14.3.0

244 Chapter 32. Contributing Guidelines

CHAPTER

THIRTYTHREE

EDITING THIS USER GUIDE

This user guide is generated with Sphinx. Sphinx is an open-source Python project designed to make writing software
documentation easier. The documentation is written in a reStructuredText (it’s similar to markdown), wh ich Sphinx
extends for software documentation. The source for the documentation is the docs/source directory in top-level of
the source code.

33.1 Quick start

To build this user guide on your local machine, you need to install Sphinx and its dependencies. Sphinx is a Python
3 package and it is available via pip. This user guide uses the Read The Docs theme, so you will also need to install
sphinx-rtd-theme. It also uses the sphinxcontrib-bibtex and recommonmark extensions, which you’ll need to install.

$ cd docs
$ pip install -r requirements.txt

To build this user guide locally, navigate to the docs/ directory and make the html target.

$ make html

This will build the user guide in docs/build/html, and you can open index.html in your web-browser. The source
files for the user guide are found in docs/source.

Note: You can clean the documentation with make clean.

33.2 Learning reST

Writing reST can be tricky at first. Whitespace matters, and some directives can be easily miswritten. Two important
things you should know right away are:

• Indents are 3-spaces

• “Things” are separated by 1 blank line. For example, a list or code-block following a paragraph should be
separated from the paragraph by 1 blank line.

You should keep these in mind when you’re first getting started. Dedicating an hour to learning reST will save you time
in the long-run. Below are some good resources for learning reST.

• reStructuredText primer: (single best resource; however, it’s better read than skimmed)

• Official reStructuredText reference (there is a lot of information here)

245

https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex/
https://recommonmark.readthedocs.io/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://docutils.sourceforge.io/docs/user/rst/quickref.html

GCHP, Release 14.3.0

• Presentation by Eric Holscher (co-founder of Read The Docs) at DjangoCon US 2015 (the entire presentation is
good, but reST is described from 9:03 to 21:04)

• YouTube tutorial by Audrey Tavares

A good starting point would be Eric Holscher’s presentations followed by the reStructuredText primer.

33.3 Style guidelines

Important: This user guide is written in semantic markup. This is important so that the user guide remains maintain-
able. Before contributing to this documentation, please review our style guidelines (below). When editing the source,
please refrain from using elements with the wrong semantic meaning for aesthetic reasons. Aesthetic issues can be
addressed by changes to the theme.

For titles and headers:

• Section headers should be underlined by # characters

• Subsection headers should be underlined by - characters

• Subsubsection headers should be underlined by ^ characters

• Subsubsubsection headers should be avoided, but if necessary, they should be underlined by " characters

File paths (including directories) occuring in the text should use the :file: role.

Program names (e.g. cmake) occuring in the text should use the :program: role.

OS-level commands (e.g. rm) occuring in the text should use the :command: role.

Environment variables occuring in the text should use the :envvar: role.

Inline code or code variables occuring in the text should use the :code: role.

Code snippets should use .. code-block:: <language> directive like so

.. code-block:: python

import gcpy
print("hello world")

The language can be “none” to omit syntax highlighting.

For command line instructions, the “console” language should be used. The $ should be used to denote the console’s
prompt. If the current working directory is relevant to the instructions, a prompt like $~/path1/path2$ should be
used.

Inline literals (e.g. the $ above) should use the :literal: role.

246 Chapter 33. Editing this User Guide

https://www.youtube.com/watch?v=eWNiwMwMcr4
https://www.youtube.com/watch?v=DSIuLnoKLd8

CHAPTER

THIRTYFOUR

GIT SUBMODULES

34.1 Forking submodules

This sections describes updating git submodules to use your own forks. You can update submodule so that they use your
forks at any time. It is recommended you only update the submodules that you need to, and that you leave submodules
that you don’t need to modify pointing to the GEOS-Chem repositories.

The rest of this section assumes you are in the top-level of GCHP, i.e.,

$ cd GCHP # navigate to top-level of GCHP

First, identify the submodules that you need to modify. The .gitmodules file has the paths and URLs to the submod-
ules. You can see it with the following command

$ cat .gitmodules
[submodule "src/MAPL"]

path = src/MAPL
url = https://github.com/sdeastham/MAPL

[submodule "src/GMAO_Shared"]
path = src/GMAO_Shared
url = https://github.com/geoschem/GMAO_Shared

[submodule "ESMA_cmake"]
path = ESMA_cmake
url = https://github.com/geoschem/ESMA_cmake

[submodule "src/gFTL-shared"]
path = src/gFTL-shared
url = https://github.com/geoschem/gFTL-shared.git

[submodule "src/FMS"]
path = src/FMS
url = https://github.com/geoschem/FMS.git

[submodule "src/GCHP_GridComp/FVdycoreCubed_GridComp"]
path = src/GCHP_GridComp/FVdycoreCubed_GridComp
url = https://github.com/sdeastham/FVdycoreCubed_GridComp.git

[submodule "src/GCHP_GridComp/GEOSChem_GridComp/geos-chem"]
path = src/GCHP_GridComp/GEOSChem_GridComp/geos-chem
url = https://github.com/sdeastham/geos-chem.git

[submodule "src/GCHP_GridComp/HEMCO_GridComp/HEMCO"]
path = src/GCHP_GridComp/HEMCO_GridComp/HEMCO
url = https://github.com/geoschem/HEMCO.git

Once you know which submodules you need to update, fork each of them on GitHub.

247

GCHP, Release 14.3.0

Once you have your own forks for the submodules that you are going to modify, update the submodule URLs in .
gitmodules

$ git config -f .gitmodules -e # opens editor, update URLs for your forks

Synchronize your submodules

$ git submodule sync

Add and commit the update to .gitmodules.

$ git add .gitmodules
$ git commit -m "Updated submodules to use my own forks"

Now, when you push to your GCHP fork, you should see the submodules point to your submodule forks.

248 Chapter 34. Git Submodules

CHAPTER

THIRTYFIVE

TERMINOLOGY

absolute path
The full path to a file, e.g., /example/foo/bar.txt. An absolute path should always start with /. As opposed
to a relative path.

build
See compile.

build directory
A directory where build configuration settings are stored, and where intermediate build files like object files,
module files, and libraries are stored.

checkpoint file
See restart file.

compile
Generating an executable program from source code (which is in a plain-text format).

dependencies
The software libraries that are needed to compile GCHP. These include HDF5, NetCDF, and ESMF. See Software
Requirements for a complete list.

environment
The software packages and software configuration that are active in your current terminal or script. In Linux, the
$HOME/.bashrc script performs automatic configuration when your terminal starts. You can manually configure
your environment by running commands like source path_to_a_script or with tools like TCL or LMod for
modulefiles. Software containers are effectively a prepackaged operating system + software + environment.

gridded component
A formal model component. MAPL organizes model components with a tree structure, and facilitates component
interconnections.

HISTORY
The MAPL gridded component that handles model output. All GCHP output diagnostics are facilitated by HIS-
TORY.

relative path
The path to a file relative to the current working directory. For example, the relative path to /example/foo/
bar.txt if your current working directory is /example is foo/bar.txt. As opposed to an absolute path.

restart file
A NetCDF file with initial conditions for a simulation. Also called a checkpoint file in GCHP.

run directory
The working directory for a GEOS-Chem simulation. A run directory houses the simulation’s configuration files,
the output directory (OutputDir), and input files/links such as restart files or input data directories.

249

https://en.wikipedia.org/wiki/Tree_structure

GCHP, Release 14.3.0

script
A file that scripts a sequence of commands. Typically a bash that is written to execute a sequence of commands.

software environment
See environment.

stretched-grid
A cubed-sphere grid that is “stretched” to enhance the grid resolution in a region.

target face
The face of a stretched-grid that is refined. The target face is centered on the target point.

terminal
A command-line.

250 Chapter 35. Terminology

CHAPTER

THIRTYSIX

GCHP VERSION HISTORY

For a list of updates by GCHP version, please see:

• CHANGELOG.md for the GEOS-Chem science codebase

• CHANGELOG.md for the GCHP wrapper

• CHANGELOG.md for HEMCO

251

https://github.com/geoschem/geos-chem/blob/main/CHANGELOG.md
https://github.com/geoschem/GCHP/blob/main/CHANGELOG.md
https://github.com/geoschem/HEMCO/blob/main/CHANGELOG.md

GCHP, Release 14.3.0

252 Chapter 36. GCHP version history

CHAPTER

THIRTYSEVEN

UPLOAD TO SPACK

This page describes how to upload recipe changes to Spack. Common recipe changes include updating available ver-
sions of GCHP and changing version requirements for dependencies.

1. Create a fork of https://github.com/spack/spack.git and clone your fork.

2. Change your SPACK_ROOT environment variable to point to the root directory of your fork clone.

3. Create a descriptive branch name in the clone of your fork and checkout that branch.

4. Make any changes to $SPACK_ROOT/var/spack/repos/builtin/packages/package_name/ as desired.

5. Install Flake8 and mypy using conda install flake8 and conda install mypy if you don’t already have
these packages.

6. Run Spack’s style tests using spack style, which will conduct tests in $SPACK_ROOT using Flake8 and mypy.

7. (Optional) Run Spack’s unit tests using spack unit-test. These tests may take a long time to run. The unit
tests will always be run when you submit your PR, and the unit tests primarily test core Spack features unrelated
to specific packages, so you don’t usually need to run these manually.

8. Prefix your commit messages with the package name, e.g. gchp: added version 13.1.0.

9. Push your commits to your fork.

10. Create a PR targetted to the develop branch of the original Spack repository, prefixing the PR title with the
package name, e.g. gchp: added version 13.1.0.

253

https://github.com/spack/spack.git

GCHP, Release 14.3.0

254 Chapter 37. Upload to Spack

BIBLIOGRAPHY

[Bey et al., 2001] Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu,
H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated
meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001.
doi:10.1029/2001JD000807.

[Bindle et al., 2021] Bindle, L., Martin, R. V., Cooper, M. J., Lundgren, E. W., Eastham, S. D., Auer, B. M., Clune,
T. L., Weng, H., Lin, J., Murray, L. T., Meng, J., Keller, C. A., Putman, W. M., Pawson, S., and Jacob, D. J.
Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model. Geosci. Model Dev.,
14(10):5977–5997, 2021. doi:10.5194/gmd-14-5977-2021.

[Eastham et al., 2018] Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang, J., Li,
C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson, M. A.,
Trayanov, A. L., Molod, A. M., Martin, R. V., and Jacob, D. J. GEOS-Chem High Performance (GCHP
v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively
parallel applications. Geoscientific Model Development, 11(7):2941–2953, July 2018. doi:10.5194/gmd-
11-2941-2018.

[Keller et al., 2014] Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO
v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci.
Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014.

[Lin et al., 2023] Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob,
D. J. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric
chemistry models: implementation and evaluation within the Kinetic Pre-Processor (KPP) version 3.0.0. J.
Adv. Model. Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS003293.

[Lin et al., 2021] Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4,
S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized Emissions
Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the
GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geosci.
Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021.

[Long et al., 2015] Long, M.S., and. J.E. Nielsen, R. Y., Keller, C.A., da Silva, A., Sulprizio, M.P., Pawson, S., and
Jacob, D.J. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an at-
mospheric chemistry module for Earth system models. Geosci. Model Dev., 8(3):595–602, March 2015.
doi:10.5194/gmd-8-595-2015.

[Luo et al., 2020] Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in GEOS-
Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev.,
13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020.

[Martin et al., 2022] Martin, R. V., Eastham, S. D., Bindle, L., Lundgren, E. W., Clune, T. L., Keller, C. A., Downs,
W., Zhang, D., Lucchesi, R. A., Sulprizio, M. P., Yantosca, R. M., Li, Y., Estrada, L., Putman, W. M.,
Auer, B. M., Trayanov, A. L., Pawson, S., and Jacob, D. J. Improved Advection, Resolution, Performance,

255

https://doi.org/10.1029/2001JD000807
https://doi.org/10.5194/gmd-14-5977-2021
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.1029/2022MS003293
https://doi.org/0.5194/gmd-14-5487-2021
https://doi.org/10.5194/gmd-8-595-2015
https://doi.org/10.5194/gmd-13-2879-2020

GCHP, Release 14.3.0

and Community Access in the New Generation (Version 13) of the High Performance GEOS-Chem Global
Atmospheric Chemistry Model (GCHP). Geosci. Model Dev. Discuss., 2022:1–30, 2022. doi:10.5194/gmd-
2022-42.

[Trivitayanurak et al., 2008] Trivitayanurak, W., Adams, P., Spracklen, D., and Carslaw, K. Tropospheric aerosol mi-
crophysics simulation with assimilated meteorology: model description and intermodel comparison. Atmos.
Chem. Phys., 8:3149–3168, 2008.

[Yu and Luo 2009] Yu, F. and Luo, G. Simulation of particle size distribution with a global aerosol model: Contribu-
tion of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys., 9(7):7691–7710, 2009.

[Zhuang et al., 2020] Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sulprizio, M. P.,
and Eastham, S. D. Enabling High-Performance Cloud Computing for Earth Science Modeling on Over a
Thousand Cores: Application to the GEOS-Chem Atmospheric Chemistry Model. Journal of Advances in
Modeling Earth Systems, May 2020. doi:10.1029/2020MS002064.

256 Bibliography

https://doi.org/10.5194/gmd-2022-42
https://doi.org/10.5194/gmd-2022-42
https://doi.org/10.1029/2020MS002064

INDEX

Symbols
$PATH, 76
${HOME}, 76
_FillValue

command line option, 177

A
absolute path, 249
all

command line option, 216–218
allPES.log

command line option, 59

B
BackgroundVV

command line option, 220
batch

command line option, 59
boundary_layer

command line option, 217
build, 249
build directory, 249

C
cap_restart

command line option, 59
CC, 8, 19
cdo

command line option, 155
checkpoint file, 249
command line option

_FillValue, 177
all, 216–218
allPES.log, 59
BackgroundVV, 220
batch, 59
boundary_layer, 217
cap_restart, 59
cdo, 155
constant, 216, 217
Contact, 179
Conventions, 179

DD_AeroDryDep, 213
DD_DustDryDep, 213
DD_DvzAerSnow, 213
DD_DvzAerSnow_Luo, 213
DD_DvzMinVal, 213
DD_F0, 214
DD_Hstar_Old, 214
DD_KOA, 214
decay_of_another_species, 217
Density, 213
e.g., 59
efolding, 216
EGRESS, 60
Filename, 179
Format, 179
Formula, 212
FullName, 212
gcchem_internal_checkpoint.YYYYMMDD_HHmmz.nc4,

60
gchp.YYYYMMSS_HHmmSSz.log, 59
GCPy, 155
gregorian, 173
halflife, 216
HEMCO, 217
Henry_CR, 213
Henry_CR_Luo, 213
Henry_K0, 213
Henry_K0_Luo, 213
Henry_pKa, 213
History, 179
HistoryCollectionName.rcx, 60
Is_Advected, 212
Is_Aerosol, 212
Is_DryAlt, 212
Is_DryDep, 212
Is_Gas, 212
Is_Hg0, 212
Is_Hg2, 212
Is_HgP, 212
Is_HygroGrowth, 212
Is_Photolysis, 212
Is_RadioNuclide, 212

257

GCHP, Release 14.3.0

Is_Tracer, 216
lat, 171
lat:axis, 175
lat:long_name, 175
lat:units, 175
lat_zone, 216, 217
lev, 171
lev:axis, 174
lev:long_name, 173
lev:positive, 174
lev:units, 174
logfile.000000.out, 59
lon, 171
lon:axis, 176
lon:long_name, 175
lon:units, 175
long_name, 176
maintain_mixing_ratio, 217
missing_value, 176
module, 72
MP_SizeResAer, 220
MP_SizeResNum, 220
MW_g, 213
Name, 212
ncdump, 155
nco, 155
ncview, 155
netcdf-scripts, 155
none, 216, 217
OutputDir/GEOSChem.HistoryCollectionName.YYYYMMDD_HHmmz.nc4,

60
Panoply, 155
ppbv, 217
pressures, 218
Radius, 213
References, 179
Restarts/GEOSChem.Restart.YYYYMMDD_HHmmz.cN.nc4,

60
Snk_Horiz, 216
Snk_Lats, 216
Snk_Mode, 216
Snk_Period, 216
Snk_Value, 217
Snk_Vert, 217
Src_Add, 217
Src_Horiz, 217
Src_Lats, 217
Src_Mode, 217
Src_Pressures, 218
Src_Unit, 217
Src_Value, 218
Src_Vert, 218
standard, 173
stratosphere, 218

surface, 217, 218
time, 171
time:axis, 173
time:calendar, 172
time:long_name, 172
time:units, 172
timestep, 218
Title, 179
troposphere, 217, 218
Units, 218
units, 176
warnings_and_errors.log, 60
WD_AerScavEff, 215
WD_CoarseAer, 214
WD_ConvFacI2G, 214
WD_ConvFacI2G_Luo, 214
WD_Is_H2SO4, 214
WD_Is_HNO3, 214
WD_Is_SO2, 214
WD_KcScaleFac, 215
WD_KcScaleFac_Luo, 215
WD_LiqAndGas, 214
WD_RainoutEff, 215
WD_RainoutEff_Luo, 216
WD_RetFactor, 215
xarray, 156

compile, 249
constant

command line option, 216, 217
Contact

command line option, 179
Conventions

command line option, 179
CS_RES, 96
CXX, 8, 19

D
DD_AeroDryDep

command line option, 213
DD_DustDryDep

command line option, 213
DD_DvzAerSnow

command line option, 213
DD_DvzAerSnow_Luo

command line option, 213
DD_DvzMinVal

command line option, 213
DD_F0

command line option, 214
DD_Hstar_Old

command line option, 214
DD_KOA

command line option, 214
decay_of_another_species

258 Index

GCHP, Release 14.3.0

command line option, 217
Density

command line option, 213
dependencies, 249

E
e.g.

command line option, 59
efolding

command line option, 216
EGRESS

command line option, 60
environment, 249
environment variable

$PATH, 76
${HOME}, 76
CC, 8, 19
CS_RES, 96
CXX, 8, 19
ESMF_COMM, 8
ESMF_COMPILER, 8
ESMF_DIR, 8
ESMF_INSTALL_PREFIX, 8, 9
ESMF_ROOT, 8
FC, 8, 19
GC_DATA_ROOT, 23
model, 77
MPI_ROOT, 8
scope_args, 77
scope_dir, 77
SPACK_ROOT, 76
STRETCH_FACTOR, 96
STRETCH_GRID, 96
TARGET_LAT, 96
TARGET_LON, 96

ESMF_COMM, 8
ESMF_COMPILER, 8
ESMF_DIR, 8
ESMF_INSTALL_PREFIX, 8, 9
ESMF_ROOT, 8

F
FC, 8, 19
Filename

command line option, 179
Format

command line option, 179
Formula

command line option, 212
FullName

command line option, 212

G
GC_DATA_ROOT, 23

gcchem_internal_checkpoint.YYYYMMDD_HHmmz.nc4
command line option, 60

gchp.YYYYMMSS_HHmmSSz.log
command line option, 59

GCPy
command line option, 155

gregorian
command line option, 173

gridded component, 249

H
halflife

command line option, 216
HEMCO

command line option, 217
Henry_CR

command line option, 213
Henry_CR_Luo

command line option, 213
Henry_K0

command line option, 213
Henry_K0_Luo

command line option, 213
Henry_pKa

command line option, 213
HISTORY, 249
History

command line option, 179
HistoryCollectionName.rcx

command line option, 60

I
Is_Advected

command line option, 212
Is_Aerosol

command line option, 212
Is_DryAlt

command line option, 212
Is_DryDep

command line option, 212
Is_Gas

command line option, 212
Is_Hg0

command line option, 212
Is_Hg2

command line option, 212
Is_HgP

command line option, 212
Is_HygroGrowth

command line option, 212
Is_Photolysis

command line option, 212
Is_RadioNuclide

command line option, 212

Index 259

GCHP, Release 14.3.0

Is_Tracer
command line option, 216

L
lat

command line option, 171
lat:axis

command line option, 175
lat:long_name

command line option, 175
lat:units

command line option, 175
lat_zone

command line option, 216, 217
lev

command line option, 171
lev:axis

command line option, 174
lev:long_name

command line option, 173
lev:positive

command line option, 174
lev:units

command line option, 174
logfile.000000.out

command line option, 59
lon

command line option, 171
lon:axis

command line option, 176
lon:long_name

command line option, 175
lon:units

command line option, 175
long_name

command line option, 176

M
maintain_mixing_ratio

command line option, 217
missing_value

command line option, 176
model, 77
module

command line option, 72
MP_SizeResAer

command line option, 220
MP_SizeResNum

command line option, 220
MPI_ROOT, 8
MW_g

command line option, 213

N
Name

command line option, 212
ncdump

command line option, 155
nco

command line option, 155
ncview

command line option, 155
netcdf-scripts

command line option, 155
none

command line option, 216, 217

O
OutputDir/GEOSChem.HistoryCollectionName.YYYYMMDD_HHmmz.nc4

command line option, 60

P
Panoply

command line option, 155
ppbv

command line option, 217
pressures

command line option, 218

R
Radius

command line option, 213
References

command line option, 179
relative path, 249
restart file, 249
Restarts/GEOSChem.Restart.YYYYMMDD_HHmmz.cN.nc4

command line option, 60
run directory, 249

S
scope_args, 77
scope_dir, 77
script, 250
Snk_Horiz

command line option, 216
Snk_Lats

command line option, 216
Snk_Mode

command line option, 216
Snk_Period

command line option, 216
Snk_Value

command line option, 217
Snk_Vert

command line option, 217

260 Index

GCHP, Release 14.3.0

software environment, 250
SPACK_ROOT, 76
Src_Add

command line option, 217
Src_Horiz

command line option, 217
Src_Lats

command line option, 217
Src_Mode

command line option, 217
Src_Pressures

command line option, 218
Src_Unit

command line option, 217
Src_Value

command line option, 218
Src_Vert

command line option, 218
standard

command line option, 173
stratosphere

command line option, 218
STRETCH_FACTOR, 96
STRETCH_GRID, 96
stretched-grid, 250
surface

command line option, 217, 218

T
target face, 250
TARGET_LAT, 96
TARGET_LON, 96
terminal, 250
time

command line option, 171
time:axis

command line option, 173
time:calendar

command line option, 172
time:long_name

command line option, 172
time:units

command line option, 172
timestep

command line option, 218
Title

command line option, 179
troposphere

command line option, 217, 218

U
Units

command line option, 218
units

command line option, 176

W
warnings_and_errors.log

command line option, 60
WD_AerScavEff

command line option, 215
WD_CoarseAer

command line option, 214
WD_ConvFacI2G

command line option, 214
WD_ConvFacI2G_Luo

command line option, 214
WD_Is_H2SO4

command line option, 214
WD_Is_HNO3

command line option, 214
WD_Is_SO2

command line option, 214
WD_KcScaleFac

command line option, 215
WD_KcScaleFac_Luo

command line option, 215
WD_LiqAndGas

command line option, 214
WD_RainoutEff

command line option, 215
WD_RainoutEff_Luo

command line option, 216
WD_RetFactor

command line option, 215

X
xarray

command line option, 156

Index 261

	Quickstart Guide
	1. Clone GCHP
	2. Create a run directory
	3. Configure your build
	4. Compile and install
	5. Configure your run directory
	6. Run GCHP

	System Requirements
	Software Requirements
	Installing ESMF

	Hardware Requirements
	Bare Minimum Requirements
	Recommended Minimum Requirements
	Big Compute Recommendations
	General Hardware and Software Recommendations

	Key References
	Download the model
	Compile
	Create a build directory
	Resolving initialization errors

	Configure your build
	Compile GCHP
	Recompiling
	GCHP build options

	Create a Run Directory
	Explanations of Prompts
	Enter ExtData path
	Choose a simulation type
	Choose meteorology source
	Enter run directory path
	Enter run directory name
	Enable version control (optional)

	Download Input Data
	Install the bashdatacatalog
	Download Data Catalogs
	Fetching Metadata and Downloading Input Data
	See Also

	Run the model
	Pre-run checklist
	How to run GCHP
	Run interactively
	Run as batch job

	Verify a successful run
	Reuse a run directory
	Archive run output
	Clean a run directory

	Configuration files
	High-level summary
	Additional resources
	setCommonRunSettings.sh
	GCHP.rc
	CAP.rc
	ExtData.rc
	geoschem_config.yml
	HEMCO_Config.rc
	input.nml
	logging.yml
	HISTORY.rc
	Defining Grid Labels
	Defining Active Collections
	Defining Collections
	Example HISTORY.rc configuration

	HEMCO_Diagn.rc

	Configure a run
	Compute resources
	Set number of nodes and cores
	Change domain stack size

	Basic run settings
	Set cubed-sphere grid resolution
	Set stretched grid parameters
	Turn on/off model components
	Change model timesteps
	Set simulation start date and duration

	Inputs
	Change restart file
	Enable restart file to have missing species
	Turn on/off emissions inventories
	Change input meteorology
	Add new emissions files

	Outputs
	Output diagnostics data on a lat-lon grid
	Output restart files at regular frequency
	Turn on/off diagnostics
	Set diagnostic frequency, duration, and mode
	Add a new diagnostics collection
	Generate monthly mean diagnostics
	Prevent overwriting diagnostic files

	Output Files
	File descriptions
	Memory
	Timing

	Plot Output Data
	Panoply
	Python

	Debugging
	Configure errors
	Build-time errors
	Run-time errors
	Recompile with debug flags
	Enable maximum print output for GEOS-Chem and HEMCO
	Enable ESMF error log output
	Enable maximum print output for MAPL
	Read the code
	Inspecting memory
	Inspecting timing

	Load software into your environment
	On the Amazon Web Services Cloud
	On a shared computer cluster
	1. Check if libraries are available as modules
	1a. Module load example

	2. Check if Spack-built libraries are available
	3. Check if libaries have been manually installed
	4. If there are none of these, install them with Spack

	Build required software with Spack
	Introduction
	Install Spack and do first-time setup
	Clone a copy of GCClassic, GCHP, or HEMCO
	Install the recommended compiler
	Build GEOS-Chem dependencies and useful tools
	Add spack load commands to your environment file
	Clean up

	Set up AWS ParallelCluster
	1. Create an FSx for Lustre file system
	2. AWS CLI Installation and First-Time Setup
	3. Create your AWS ParallelCluster
	4. Running GCHP on ParallelCluster

	Cache Input Data on Fast Drives
	Install the bashdatacatalog
	Set Up the ExtDataCache Directory
	Update the Collection URLs
	Copy Data to ExtDataCache
	Update Run Directory to use ExtDataCache
	See Also

	Use GCHP Containers
	Software requirements
	Performance
	Pulling an image and creating run directory using Singularity
	Setting up and running GCHP using Singularity
	Downloading data directories using GEOS-Chem Classic’s dry-run option

	Stretched-Grid Simulation
	Overview
	Choose stretching parameters
	Create a restart file
	Configure run directory

	Tutorial: Eastern United States
	Requirements
	Create run directory
	Create restart file
	Configure run directory
	Run GCHP
	Plot the output

	Output Along a Track
	Creating a satellite track file
	Updating HISTORY
	Unravelling 1D overpass timeseries

	Manage a data archive with bashdatacatalog
	What is bashdatacatalog?
	Usage instructions

	Archive output with the History diagnostics
	Introduction
	The HISTORY.rc configuration file
	Wildcards (GEOS-Chem Classic only)
	Prefixes
	File naming convention
	Vertical coordinates in netCDF files

	Diagnostic collections
	AdvFluxVert
	AerosolMass
	Aerosols
	BoundaryConditions
	Budget
	Carbon
	CH4
	CloudConvFlux
	CO
	CO2
	ConcAboveSfc
	ConcAfterChem
	DryDep
	JValues
	KppARDiags
	KppDiags
	LevelEdgeDiags
	MercuryChem
	MercuryEmis
	MercuryOcean
	Metrics
	ProdLoss
	RadioNuclide
	Restart
	RRTMG
	RxnConst
	RxnRates
	SatDiagn
	SatDiagnEdge
	SpeciesConc
	StateChm
	StateMet
	StratBM
	Tomas
	UVFlux
	WetLossConv
	WetLossLS

	Adding new History diagnostics

	Work with netCDF files
	Useful tools
	Examine the contents of a netCDF file
	Read the contents of a netCDF file
	Read data with Python
	Read data from multiple files in Python

	Determining if a netCDF file is COARDS-compliant
	Edit variables and attributes
	Concatenate netCDF files
	Concatenate with the netCDF operators
	Concatenate with Python

	Regrid netCDF files
	Regrid with cdo
	Issue with cdo remapdis regridding tool

	Regrid with GCPy
	Regrid with nco
	Regrid with xarray
	Regrid with xESMF

	Crop netCDF files
	Add a new variable to a netCDF file
	Chunk and deflate a netCDF file to improve I/O

	Prepare COARDS-compliant netCDF files
	The COARDS netCDF standard
	COARDS dimensions
	COARDS coordinate vectors
	time
	Special considerations for time vectors

	lev
	Additional considerations for lev vectors:

	lat
	lon

	COARDS data arrays
	Attributes for data arrays
	Ordering of the data

	COARDS Global attributes
	For more information

	Customize simulations with research options
	Aerosols
	Aerosol microphysics
	APM
	TOMAS

	Chemistry
	Adaptive Rosenbrock solver with mechanism auto-reduction
	Alternate chemistry mechanisms
	Carbon mechanism
	Custom full-chemistry mechanism
	Hg mechanism

	HO2 heterogeneous chemistry reaction probability
	TransportTracers

	Diagnostics
	GEOS-Chem and HEMCO diagnostics
	RRTMG radiative transfer diagnostics

	Emissions
	Offline vs. online emissions
	Example: Disabling offline dust emissions

	Sea salt debromination

	Photolysis
	Particulate nitrate photolysis

	Wet deposition
	Luo et al 2020 wetdep parameterization

	Understand what error messages mean
	Where does error output get printed?
	Compile-time errors
	Cannot open include file netcdf.inc
	KPP error: Cannot find -lfl
	GNU Fortran internal compiler error

	Run-time errors
	Floating invalid or floating-point exception error
	Forced exit from Rosenbrock
	More about KPP error tolerances

	HEMCO Error: Cannot find field
	HEMCO Error: Cannot find file for current simulation time
	HEMCO Run Error
	HEMCO time stamps may be wrong
	Negative tracer found in WETDEP
	Permission denied error
	Excessive fall velocity error

	File I/O errors
	List-directed I/O syntax error
	Nf_Def_Var: can not define variable
	NetCDF: HDF Error

	Segmentation faults and similar errors
	Array-out-of-bounds error
	Segmentation fault encountered after TPCORE initialization
	Invalid memory access
	Stack overflow

	Less commmon errors
	Bus Error
	Double free or corruption
	Dwarf subprogram entry error
	Free: invalid size
	Munmap_chunk: invalid pointer
	Out of memory asking for NNNNN

	Debug GEOS-Chem and HEMCO errors
	Check if a solution has been posted to Github
	Check if your computational environment is configured properly
	Check any code modifications that you have added
	Check if your runs exceeded time or memory limits
	Send debug printout to the log files
	Look at the traceback output
	Identify whether the error happens consistently
	Isolate the error to a particular operation
	Compile with debugging options
	Use a debugger
	Print it out if you are in doubt!
	Use the brute-force method when all else fails
	Identify poorly-performing code with a profiler

	View GEOS-Chem species properties
	Species properties defined
	Required default properties
	Identification
	Physical properties
	Dry deposition properties
	Wet deposition properties
	Transport tracer properties
	Properties used by each transport tracer

	Other properties

	Access species properties in GEOS-Chem
	The Species derived type
	The SpcPtr derived type
	The GEOS-Chem Species Database object
	Species index lookup with Ind_()
	Species lookup within a loop

	Update chemical mechanisms with KPP
	Using KPP: Quick start
	1. Navigate to the KPP/custom folder within GEOS-Chem
	2. Edit the chemical mechanism configuration files
	custom.eqn
	custom.kpp

	3. Run the build_mechanism.sh script
	4. Recompile GEOS-Chem with your custom mechanism

	Using KPP: Reference section
	Adding species to a mechanism
	Adding reactions to a mechanism
	Gas-phase reactions
	Gas-phase reactions: General form
	Rates for two-body reactions according to the Arrhenius law
	Other rate-law functions
	Making your rate law functions computationally efficient

	Heterogeneous reactions
	Photolysis reactions
	Adding production and loss families to a mechanism
	Changing the numerical integrator

	View related documentation
	Support Guidelines
	How to report a bug
	Where can I ask for help?
	What type of support can I expect?
	How to submit changes
	How to request an enhancement

	Contributing Guidelines
	We use GitHub and ReadTheDocs
	When should I submit updates?
	How can I submit updates?
	Process for submitting code updates
	Coding conventions
	Checklist for submitting code updates
	Checklist for submitting data files

	How can I request a new feature?
	How can I report a bug?
	Where can I ask for help?

	Editing this User Guide
	Quick start
	Learning reST
	Style guidelines

	Git Submodules
	Forking submodules

	Terminology
	GCHP version history
	Upload to Spack
	Bibliography
	Index

